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A B S T R A C T

A new focus is given regarding the use of the quadrupole technique to solve heat diffusion problems with heat
source in layered structures. The thermal impedances formalism is used that allows representing the heat
transfer in such systems as impedances network. This approach offers a fast and accurate mean to calculate the
average temperature of the heat source according to its spatial local and its transient evolution.

1. Introduction

The goal of this paper is to propose an extended application of the
integral transforms technique [1,2] to the simulation of the heat
transfer in layered composite materials with heat sources. Those
sources can be located within different layers along the time, simulating
for instance a moving heat source along one specific direction. Ob-
viously, this study will envisage that the composite medium is con-
stituted as a stack of layers having different thermal properties. It will
be also accounted with the thermal boundary resistances between the
layers. Several works have been already published that deal mainly
with the two-layer composite medium [3–5]. Our purpose is to gen-
eralize the proposed thermal impedance network to composites invol-
ving several layers, whatever their number as the configuration pre-
sented in Fig. 1. The integral transforms method is at the foundation of
the quadrupoles and thermal impedances network modelling. A specific
approach, called the QuadS technique, has been already proposed for
the 1D heat transfer in homogenous medium with a uniform heat source
using the thermal impedances network with the source located at the
central node of the elementary cell [6]. The main objective in im-
plementing such a technique is to propose a fast and accurate method
that allows calculating the average temperature at the location of the
thermal disturbance.

Such a work finds its interest regarding the heat transfer modelling of
advanced experimental techniques that have been developed during the last
two decades that allow identifying the thermal properties of composite
materials as the thermal conductivity, thermal diffusivity or the thermal
boundary resistance at the interface between the layers. The thermore-
flectance (TR) [7] and the flying spot infrared thermography (FST) [8,9]
techniques consist in generating a thermal disturbance at several locations
at the surface of the medium from a photothermal source (laser). The

subsequent temperature change is measured from reflectance in the TR
technique or from the proper emission of the medium in the infrared using
the FST technique. According to the optical properties of the materials, this
disturbance is generally considered as a heat source since the source pe-
netration depth can be of the same order of magnitude as the source ex-
tension on the surface. Those techniques are now widely used since they
provide a huge quantity of data that allows solving the inverse heat con-
duction problem in a very accurate way at the different scales of the het-
erogeneous medium. However, several issues remain critical regarding the
simulation of the direct model with respect to the experimental configura-
tion. Indeed, the characteristic dimensions of the thermal disturbance are
generally very low with regards to the composite size in order to address the
scale of the smallest heterogeneities. By the way, the discrete techniques
(finite elements or volume elements) [10] require high computational re-
sources and generate high computation times. Therefore, analytical ap-
proaches are preferred since they offer high accuracy and much less com-
putation times and the proposed technique addressed in this paper intends
to bring such an approach.

2. Illustration of the technique for heat diffusion in one layer with
a localized heat source

2.1. Heat transfer model

As represented in Fig. 2, let us consider one layer with thickness e, specific
heat Cp, density ρ and thermal conductivity tensor =K k k k( , , )x y z . An
instantaneous localized heat source term is defined as:
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The link between this test case and the experimental configuration
presented in Fig. 1 will be established later in section 3. Using the
geometrical parameters reported in Fig. 2, the mathematical equations
for the heat transfer by conduction within the medium, describing the
temperature T x y z t( , , , ), are:
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The boundary conditions along x and y are:
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The heat flux and temperature at z=0 and z= e are respectively
denoted φ0, T0, φe and Te, Finally, we assume a uniform initial condition
as:
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2.2. Integral transforms application

The Laplace transform is first applied on relations (1) to (5) with
respect to the time variable as:
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Then, relations (2) to (4) become:
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where =g x y z p g x y z( , , , ) ( , , )͠ 0 denoted the Laplace transform of
g x y z t( , , , ) (relation (1)). The transformed heat flux and transformed
temperature at z=0 and z= e are respectively ψ0, θ0, ψe and θe. Let us
note that in the case of a periodic variation of the source term at a given
radial frequency ω, it is only required to replace p by jω in the previous
relations (7)–(9). Based on boundary conditions at x=0, x= Lx, y=0
and y= Ly, a cosine transform with respect to x and y coordinates is
applied as:
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Therefore, using the properties of the cosine transform with respect
to the second derivative, relation (7) becomes:
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With:

=

⎧

⎨

⎪

⎩
⎪

= =
= ≠
≠ =

≠ ≠

g

g a a n m
g a a β β m n

g a a α α m n
g a β a α β α n m

, 0
sin( )/ , 0, 0

sin( )/ , 0, 0
sin( )sin( )/ , 0, 0

x y

x y n n

y x m m

y n x m n m

0

0

0

0

In the relation (12) D= k/(ρ Cp) denotes the thermal diffusivity. The
heat flux and temperature at z=0 and z= e are respectively ψ0, θ0, ψe
and θe. As demonstrated in Ref. [1], the solution of relation (12) can be
used in order to express the transformed heat flux and temperature at
z=0 according to the same quantities at z= e as:
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Fig. 1. Composite medium made of vertical layers with different thickness and
thermal properties. A heat source q (only the location of the source is visible on
the surface) is randomly applied on the surface.

Fig. 2. Geometrical modelling for the heat source distribution in one layer.
Thanks to the boundary conditions (null heat flux at the outer surfaces), only ¼
of the domain is represented.
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