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A B S T R A C T

The aim of this paper is to present a very efficient and accurate numerical algorithm to identify a variable (space-
and temperature-dependent) heat transfer coefficient in two-dimensional inverse steady-state heat conduction
problems involving irregular heat-conducting body shapes in the presence of Dirichlet, Neumann, and Robin
boundary conditions. In this numerical method, a boundary-fitted grid generation technique (elliptic) is used to
discretize the physical domain (heat-conducting body) and solve for the steady-state heat conduction equation
by approximating the derivatives of the field variable (temperature) by algebraic ones. This paper describes a
very accurate and efficient sensitivity analysis scheme to compute the sensitivity of the temperatures to variation
of the variable heat transfer coefficient. The main advantage of the sensitivity analysis scheme is that it does not
require the solution of adjoint equation. The conjugate gradient method (CGM) is used to reduce the mismatch
between the computed temperature on part of the boundary and the simulated measured temperature dis-
tribution. The obtained results confirm that the proposed algorithm is very accurate, efficient, and robust.

1. Introduction

Inverse Heat Transfer Problems (IHTPs) are widely considered
mathematically challenging problems. IHTPs are ill-posed and difficult
to solve. Ill-posed problems are inherently unstable and very sensitive
to noise. In other words, in such problems a small error in the input data
can give rise to a large error in the solution [1–3]. Therefore, the de-
velopment of efficient, accurate, and robust numerical schemes to solve
IHTPs is of vital importance. Direct well-posed heat transfer problems
are concerned with the determination of the temperature distribution
over a heat-conducting body given that the boundary conditions, the
thermo-physical properties, the geometrical configuration of the body,
and the applied heat flux are all known. In contrast, the inverse heat
transfer problem deals with the determination of the boundary condi-
tions, the thermo-physical properties, the geometrical configuration of
the heat-conducting body, and the applied heat flux from the knowl-
edge of the temperature distribution on some part of the body
boundary. Inverse heat transfer analysis has been extensively used to
determine the thermo-physical properties such as the thermal con-
ductivity and the convection heat transfer coefficient [4–28], the heat
flux [16,25,29–33], and the boundary shape of bodies [34–40]. Other
parameters involved in heat transfer problems are also estimated using
an inverse analysis [41–43]. For example, in transient con-
duction–radiation heat transfer problems where the medium is parti-
cipating, the extinction coefficient and the scattering albedo are para-
meters that affect the temperature distribution. In Chopade et al. [42], a

combination of the lattice Boltzmann method (to solve the energy
equation) and the finite-volume method (to compute the radiative in-
formation) with the particle swarm optimization is used to recover the
extinction coefficient and the scattering albedo in a con-
ducting–radiating planar participating medium.

The evaluation of the convection heat transfer coefficient is a dif-
ficult task because convection is a very complex phenomenon [44]. The
convection heat transfer coefficient depends on many variables such as
the geometry of the surface as well as the surface temperature, to name
a few. The estimation of a variable convection heat transfer coefficient
using an inverse analysis has also been reported [45–52]. In the lit-
erature, there exist some limitations on the proposed methods by dif-
ferent researchers to identify such a variable parameter. Some of these
limitations can be summarized as follows:

- the applicability of the direct solver to rectangular or circular heated
bodies only (using traditional finite-difference method) and inability
to consider a general 2D domain.

- the inability to handle a variety of boundary conditions. Most of the
boundary conditions in the literature include a constant temperature
(Dirichlet boundary condition) or insulated case.

Thus a general methodology for a general 2D domain and boundary
conditions considering a variable convection heat transfer coefficient
with a high degree of accuracy is required. This paper deals with a two
dimensional inverse steady-state heat conduction problem. The
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objective of this study is to estimate a variable (space- and temperature-
dependent) heat transfer coefficient in an irregular body. The convec-
tion heat transfer coefficient considered in this paper is a linearly space
(boundary surface shape)- and temperature (boundary surface tem-
perature)-dependent parameter. However, the linear form can be easily
extended to other forms of dependency of the convective heat transfer
coefficient on the space and temperature such as quadratic and cubic.

In the proposed numerical approach, an elliptic grid generation
technique is used to generate a mesh over the irregular body and solve
for the steady state heat conduction equation. The discretization in the
computational domain is based on the finite-difference method, a
method chosen for its simplicity and ease of implementation. The most
innovative aspect of the numerical approach is its very efficient and
accurate sensitivity analysis scheme, already introduced by the authors
for other parameter estimation problems in heat transfer [16,24,25].
The sensitivity analysis scheme is formulated to compute the sensitivity
of the temperatures to variation of the variable heat transfer coefficient.
The conjugate gradient method is employed to minimize the difference
between the computed temperature on part of the boundary and the
simulated measured temperature. As will be shown, this numerical
methodology does not require the solution of an adjoint problem. Ex-
plicit expressions for the sensitivity coefficients are derived which allow
for the computation of the sensitivity coefficients in one single solve.

The proposed solution method introduced here is sufficiently gen-
eral and can be employed for the estimation of a space- and tempera-
ture-dependent heat transfer coefficient applied on part of the boundary

of a general two-dimensional region as long as the general two-dimen-
sional region can be mapped onto a regular computational domain.
Moreover, there is no limitation on the type of the boundary conditions.
In other words, Dirichlet, Neumann, and Robin boundary conditions
can be imposed on the domain boundary.

2. Governing equation

The mathematical representation of the steady-state heat conduc-
tion problem of interest here can be expressed as below (see Fig. 1)
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Two different cases are considered for the boundary condition on
the boundary surface Γ2 which will be considered separately:

Case 1: The heat transfer coefficient is space-dependent (Fig. 1a):

∂
∂

= − − ∞( )T
n

h Γ
k

T T Γ( ) on boundary surface
T

Γ
2 2

22 2 (4)
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Nomenclature

d(k) direction of descent at iteration k
q̇ heat flux ( )W

m2

h heat transfer coefficient ∘( )W
m . C2

Ja Jacobian matrix
J Jacobian of transformation
J objective function
kT thermal conductivity of the solid body ∘( )W

m. C
n outward drawn unit vector
T temperature (°C)
Tm measured outer surface temperature (°C)

∞T ambient temperature (°C)
x y, Cartesian coordinates in the physical domain

Greek symbols

α β γ, , metric coefficients in 2-D elliptic grid generation

β(k) search step size at iteration k
Γ boundary
γ (k) conjugation coefficient at iteration k
Ω domain
ξ η, Cartesian coordinates in the computational domain

Subscripts

i grid index in ξ - direction
j grid index in η- direction
M number of grid points in the ξ - direction
N number of grid points in the η- direction

Superscript

k iteration number

Fig. 1. Physical domain (solid body) subjected to convective heat transfer on surfaces Γi, =i 2,3,4 and heat flux q̇ on surface Γ1. The thermal conductivity of the body is kT .
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