Contents lists available at ScienceDirect

International Journal of Thermal Sciences

journal homepage: www.elsevier.com/locate/ijts

Thermal and hydraulic numerical study for a novel multi tubes in tube helically coiled heat exchangers: Effects of operating/geometric parameters

H.F. Elattar^{a,*}, A. Fouda^b, S.A. Nada^a, H.A. Refaey^c, A. Al-Zahrani^d

^a Department of Mechanical Engineering, Benha Faculty of Engineering, Benha University, Benha, 13511 Qalyubia, Egypt

^b Department of Mechanical Power Engineering, Faculty of Engineering, Mansoura University, 35516 El-Mansoura, Egypt

^c Department of Mechanical Engineering, Faculty of Engineering at Shoubra, Benha University, 11629 Cairo, Egypt

^d Department of Mechanical Engineering, Faculty of Engineering, University of Jeddah, 21589 Jeddah, KSA

ARTICLE INFO

Keywords: Helical coil Multi tubes in tube Heat exchanger CFD simulation Thermal-hydraulic performance

ABSTRACT

Compactness with high performance heat exchangers are main challenges in a lot of engineering applications. Thus, this research reports CFD simulation of a novel MTTHC (multi tubes in tube helically coiled) heat exchanger using ANSYS-FLUENT 14.5. The aim of the work is to investigate the thermal and hydraulic performance of the MTTHC for turbulent flow. The effects of the operating and geometrical parameters of the coil on the cold/hot water Nusselt numbers, heat transfer coefficients, pumping power, effectiveness, and thermal-hydraulic index are studied and presented. The results show that, the largest heat transfer coefficient is found at N = 3 and $\beta = 0^{\circ} \& 90^{\circ}$, and the pumping power (P) rises with \cong 20 times if N changed from 1 to 5 at any β . Moreover, the effectiveness of the coil (ε) has the largest values at $\beta = 0^{\circ} \& 90^{\circ}$ and N=3, and it enhances with 8.5%, 9% and 7% if N increased from 1 to 3 at $\beta = 0^{\circ}$, 45° and 90°, respectively. In addition, thermal-hydraulic index (ξ) improves with 5%, 8% and 6% if N increased from 1, to 3 at $\beta = 0^{\circ}$, 45° and 90°, respectively. Finally, Numerical correlations for P, ε and ξ are correlated and presented within reasonable errors.

1. Introduction

Heat exchangers in the shape of helical coils are broadly used in several engineering applications such as energy conversion systems, refrigeration and air conditioning systems, chemical processing, thermal power plants, nuclear reactors, solar energy concentrator receivers, and medical equipment, due to their higher thermal performance and compact size. The flow field and the overall heat transfer coefficient in a helically coiled tube are complex as compared with the conventional heat exchanger and this is due to the dependence of the secondary flow behavior on curvature of tubes. Furthermore, a centrifugal force is generated within fluid flow because of the curvature of the tubes, so the rate of heat transfer is enhanced significantly as the induced of secondary flow. Double tubes and shell and tube helically coils heat exchangers were numerically and experimentally investigated. Owing to the complication of studying the heat transfer processes and fluid flow field in the helically coiled tubes heat exchangers, experimental investigations are costly, limited study parameter ranges and consuming time and the numerical investigations are replacement tool by using CFD packages for this concern.

The Effects of the Prandtl number and geometrical parameters on both the average and local Nusselt numbers for flow in helical pipes was investigated experimentally by Xin and Ebadian [1]. New empirical correlations for the average Nusselt number have been regressed and presented and no noticeable effect of the coil pitch existed. Xin et al. [2] investigated experimentally the effects of the coil geometry and fluid flow rates for both single-phase and two-phase (air/water) flow on helical annular pipes pressure drop for vertical and horizontal coil orientations. Different pressure drop correlations for single-phase and two-phase flow were established and presented. Rennie and Raghavan [3] reported experimentally the heat transfer in a double-pipe heat exchanger comprised one loop. Two heat exchangers with different sizes for both parallel and counter flow configurations were examined. The heat transfer coefficients in the inner tube and the annulus were obtained with different fluids flow rates. A small difference between the overall heat transfer coefficients for the parallel flow and counter flow configurations were found in spite of the higher heat transfer rates that appeared in counter flow configuration. Kumar et al. [4] performed experimental and numerical studies of tube-in-tube helical heat exchanger at the pilot plant scale. The hydrodynamics and heat transfer characteristics were investigated with different inner tube and annulus mass flow rates for counter flow configuration. A commercial CFD package (FLUENT 6.0) was used to predict the flow and thermal profiles in the coil. It was found that the overall heat transfer coefficient

https://doi.org/10.1016/j.ijthermalsci.2018.02.020

^{*} Corresponding author. E-mail address: hassan.alattar@bhit.bu.eud.eg (H.F. Elattar).

Received 14 October 2017; Received in revised form 25 January 2018; Accepted 19 February 2018 1290-0729/ © 2018 Elsevier Masson SAS. All rights reserved.

Nomenclature		Re _{cr,o} T _s	_{,avg} Critical
		$\operatorname{Re}_{cr,o} = 2$	$2000 \left(\frac{d_i}{D_i}\right)^{0.32}$
A_o	Cross sectional area of annulus $A_o = \pi (D^2 - N d_o^2)/4$, m ²	Re $_{cr,i}$ T _s ,	avg Critical
A_i	Cross section area of inner tubes, $A_i = \frac{\pi}{4} N d_i^2$, m ²	$\text{Re}_{cri} = 2000 \left(\frac{D_h}{D_h}\right)^{0.32}$	
Bo_i	Hot water buoyancy parameter, $Bo_i = \frac{Gr_i}{Re_i^{3.5}Pr_i^{0.8}}$	t	Inner tubes
Boo	Cold water buoyancy parameter, $Bo_0 = \frac{Gr_0}{n^{3.5} n^{0.8}}$	t _{o avg}	Cold water
C_{o}	Cold water heat capacity, $C_0 = m_0^* C_{n,0}$, W/K	t _{i,avg}	Hot water
C_i	Hot water heat capacity, $C_i = m_i C_{p,i}$, W/K	t _{o,in}	Temperatu
C _{p.o}	Cold water average specific heat, J/kg.K	t _{o,out}	Temperatu
C _{p,i}	Hot water average specific heat, J/kg.K	t _{i,in}	Temperatu
$D^{r,r}$	Outer tube diameter, m	t _{i,out}	Temperatu
D_c	Diameter of helical coil, m	U_o	Overall hea
De:	Hot water Dean number, $De_i = \text{Re}_i \sqrt{\frac{d_i}{d_i}}$	Ζ	Number of
201	$\frac{1}{100} \frac{1}{1000} \frac{1}{1000}$	ΔP_o	Cold water
Deo	Cold water Dean number, $De_o = \operatorname{Re}_o \sqrt{\frac{D_h}{D_o}}$	ΔP_i	Hot water
D_h	Annulus hydraulic diameter, $D_h = \frac{\sqrt{4A_0}}{4A_0}$, m	$\Delta P_{i, avg}$	Hot water
- n d:	Internal diameter of inner tubes, m	$\Delta P_{i,avg} =$	$\frac{\sum \Delta P_i}{N}$, Pa
а, d.	External diameter of inner tubes, m	$\Delta t_{i,s,avg}$	Temperatu
щ _о Н	Coil nitch, m		of the inne
h,	Hot water average heat transfer coefficient, W/m^2 .K		$\Delta t_{i,s,avg=} t_i,$
h.	Cold water average heat transfer coefficient, W/m^2 .K	$\Delta t_{o,s,avg}$	Temperatu
K.	Cold water average thermal conductivity. W/m.K		of the inner
K _i	Hot water average thermal conductivity, W/m.K		$\Delta t_{o,s,avg} = t_{s,avg}$
L	Length of helical coil, $L = Z(H^2 + (\pi D_c)^2)^{0.5}$, m	Gri	Hot water
m.	Cold water mass flow rates. $m_0^2 = \rho_0 v_0 A_0$, kg/s	•	
m _i	Hot water mass flow rates , kg/s	Gr_o	Cold water
Nuo	Cold water average Nusselt number		
Nui	Hot water average Nusselt number	Greek sy	mbols
N	Inner tubes number	0	G (C)
Pr_i	Hot water Prandtl number	β_i	Coefficient
Pr_o	Cold water Prandtl number	β_o	Coefficient
<i>O</i> .	Cold water heat transfer rates $Q_0^{\bullet} = C_0 \Delta t_0$, W	ε	effectivene
O_i^{\bullet}	Hot water heat transfer rate, $Q_i^{\bullet} = C_i \Delta t_i$, W	μ_w	Water dyna
O_{ava}^{\bullet}	Average heat transfer rate, W	ν_{i}	Hot water
P	Pumping power of the coil, W	ν_{o}	Cold water
Rei	Hot water Reynolds number, $\text{Re}_i = \frac{\rho_i v_i d_i}{\rho_i v_i d_i}$	ρ _w	Water dens
-	$\mu_i = \mu_i$	ξ	Thermal-hy
Reo	Cold water Reynolds number, $\operatorname{Re}_o = \frac{\mu_0 \cdot \sigma \cdot n}{\mu_0}$		

increases with increasing the Dean number in the inner-coiled tube for a constant annulus flow rate. Kumar et al. [5] studied numerically tubein-tube helically coiled (TTHC) heat exchanger using renormalization group (RNG) k- ε model for modeling the turbulent flow and heat transfer. The fluid flow and heat transfer characteristics were investigated for different inner (compressed air) and outer (cooling water) tube fluid flow rates for both parallel and counter flow configurations. New empirical correlations for the hydrodynamic and the heat-transfer were developed. Jayakumar et al. [6] presented experimental and CFD (Fluent 6.2) theoretical analysis of a helically coiled heat exchanger considering fluid-to-fluid heat transfer. The effects of the actual fluid properties instead of constant values on the heat transfer characteristics were presented and empirical correlation for inner heat transfer coefficient was developed. Piazza and Ciofalo [7] predicted numerically the turbulent flow and heat transfer in helically coiled heat exchangers using the k- ε , SST k- ω and RSM- ω that compared with DNS results and experimental data available of pressure drop and heat transfer. It was observed that the standard $k-\varepsilon$ model, with a near-wall treatment presents under prediction of both friction coefficient and Nusselt number. Colorado et al. [8] carried out numerical study and experimental validation to describe the heat transfer and fluid dynamic behavior of a helically coiled steam generator using transient analysis one dimensional model. The proposed model includes subcooled liquid, two-phase flow, and superheated vapour regions.

 $2000 \left(\frac{D_h}{D_c}\right)^{0.32}$ Inner tubes average surface temperature, °C Cold water average temperature, °C Hot water average temperature, °C Temperature of inlet cold water, °C Temperature of outlet cold water, °C Temperature of inlet hot water, °C Temperature of outlet hot water, °C Overall heat transfer coefficient, W/m².K Number of coil turns Cold water pressure drop, Pa Hot water pressure drop per inner tube, Pa Hot water average pressure drop for all inner tubes, $\frac{\sum \Delta P_i}{P_i}$, Pa \overline{N} , ra Temperature difference between the surface temperature of the inner tubes and the average hot water temperature, $\Delta t_{i,s,avg=} t_{i,avg} t_{s,avg}$ °C Temperature difference between the surface temperature of the inner tubes and the average cold water temperature, $\Delta t_{o,s,avg} = t_{s,avg} t_{o,avg}, {}^{o}C$ Hot water Grashof number, $Gr_i = \frac{g\beta_i(l_{i,avg} - t_{s,avg})d_i^3}{v_i^2}$ Cold water Grashof number, $Gr_o = \frac{g\beta_o(t_{s,avg} - t_{o,avg})D_h^3}{v_c^2}$ mbols Coefficient of volume expansion of hot water, (1/K) Coefficient of volume expansion of cold water, (1/K) effectiveness of the coil Water dynamic viscosity, Pa.s Hot water kinematic viscosity, (m^2/s) Cold water kinematic viscosity, (m^2/s) Water density, kg/m³ Thermal-hydrodynamic performance index [W/Pa] Zhou et al. [9] developed a novel thermodynamic optimization model

Critical Reynolds number of cold side,

Critical Reynolds number of hot side,

based on minimizing the work loss for tube-in-tube helically coiled heat exchangers. The effects of main design parameters of the heat exchanger on the available work loss were discussed and presented and the optimal design parameters were also obtained. The results of optimization model provided useful guidance for using such heat exchangers in Joule-Thomson refrigerators. Nada et al. [10] conducted an experimental study of the performance and compactness enhancement of helical-coil in a shell by the attachment of radial fins on the outer surface of the coils. Experimental correlations of Nusselt number in terms Re, Gr, and shell diameter were developed for finned and unfinned coils. Amori [11] investigated experimentally the thermo-fluid characteristics of helically coiled heat exchanger immersed in cold water. Two types of coils were tested; a conventional vertical coil and a new triple vertical coil in parallel connection i.e. meshed coils. The effect of hot water flow rates inside the tubes that varied from 2.67 to 7.08 l/min, and the inlet temperatures, namely 50, 60, 70 and 80 °C were tested. Enhancements of heat transfer and pumping power saving for meshed coils compared to single coil were notices.

Nada et al. [12-14] and Fouda et al. [15] investigated experimentally and numerically the heat transfer and pressure drop characteristics in annulus formed by multi hot rods in tube helically coiled heat exchanger for laminar flow. The effects of the geometric parameters and fluid flow parameters; number of inner tubes, annulus hydraulic Download English Version:

https://daneshyari.com/en/article/7060720

Download Persian Version:

https://daneshyari.com/article/7060720

Daneshyari.com