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A B S T R A C T

Many convection problems entail more than two isothermal boundaries. In previous work, a resistor-network
model was proposed for this class, multi-temperature convection problems. A technique dubbed dQdT was also
developed to obtain the paired convective resistances that characterize the thermal network of a multi-tem-
perature convection problem. In the present paper an extension of the Newton law of cooling is proposed as a
general formulation of multi-temperature convection in terms of multiple driving temperature differences. Most
notably, the proposed formulation eliminates the need for an effective temperature difference. The formulation
is characterized by functionality coefficients which give the relation between a heat transfer rate and one of the
temperature differences. These coefficients can be obtained using the dQdT technique. The new formulation and
the application of the dQdT technique are demonstrated for classical three-temperature convection problems.
The connection between the extended Newton formulation and the resistor-network model of multi-temperature
convection is also discussed. It is shown that dQdT can be used to determine the applicability of the resistor-
network model of convection.

1. Introduction

Many convection problems entail exclusively isothermal and adia-
batic boundary conditions. Furthermore, in many cases heat transfer
occurs between more than two isothermal boundaries. A common ex-
ample of this class, multi-temperature convection, is convective heat
transfer in channels and annuli with isothermal walls. In this case,
heat transfer is driven by more than one temperature difference.
Accordingly, the Newton law of cooling must be reconciled with the
presence of multiple temperature differences. Traditionally, an effective
temperature difference is constructed to formulate multi-temperature
convection. In previous work [1–3], it was demonstrated that using a
single effective temperature difference to formulate multi-temperature
convection can be problematic as it leads to non-physical peculiarities
in the solution. See for example the singularities in the temperature-
dependent Nusselt numbers reported by Hatton & Turton [4] for the
asymmetric Graetz problem (forced convection) and the discussion of
those results by various researchers [1,5,6]. Other examples include the
temperature-dependent Nusselt numbers presented by Mitrović &
Maletić [7] and Coelho & Pinho [8] for forced convection in an annulus
with isothermal walls, and the difficulties reported by Roeleveld et al.
[9] in developing correlations for the wall Nusselt numbers of free

convection in a vertical channel with asymmetrically heated isothermal
walls.

Recently a resistor-network model has been developed for multi-
temperature convection [1,2,10]. In this model, the isothermal
boundaries are represented by nodes at the corresponding boundary
temperatures. It has been shown that using the resistor-network model,
shortcomings of the existing approach can be addressed. See for ex-
ample reference [1]. A technique called dQdT has also been developed
[2] to evaluate the paired resistances of the resistor-network model of
convection. Nevertheless, as will be shown, the resistor-network model
is only applicable under certain conditions. In the present paper, an
extension of the Newton law of cooling is developed as a general for-
mulation of multi-temperature convection. The proposed formulation
eliminates the need for an effective temperature difference, by for-
mulating the multi-temperature convection problem in terms of mul-
tiple temperature differences. The connection between the proposed
formulation and the earlier developments, namely the resistor-network
model and the dQdT technique, is discussed. It is shown that dQdT can
be used to obtain the coefficients of the proposed formulation. It is
further shown that dQdT can be utilized to determine the applicability
of the resistor-network model.
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2. The Newton formulation

According to the Newton law of cooling, the rate of convective heat
transfer is proportional to a driving temperature difference. This tem-
perature difference is usually the difference between surface and fluid
temperatures. The Newton law of cooling is expressed mathematically
by introducing a proportionality coefficient, known as the heat transfer
coefficient, h, as shown in Equation (1). In this equation, Q1 is the heat
transfer rate at the surface, A is the surface area, and T1 and T0 denote
the surface and fluid temperatures respectively.

T1 (1)

Although h is introduced as a proportionality coefficient, it is not
necessarily a constant. In other words, the relation between the heat
transfer rate and temperature difference is not necessarily linear. Any
nonlinearity in Q1 with respect to T1 or T0 is contained in h.

Further note that tacit in the Newton formulation is the assumption
that convective heat transfer occurs in a setting with two representative
temperatures, i.e. driven by a single driving temperature difference. A
standard example is forced convection in flow over an isothermal flat
plate, shown in Fig. 1. In this case, the free-stream temperature, T0, and
the surface temperature, T1, are the two representative temperatures;
heat transfer is driven by −T T1 0. Note that T0 and T1 constitute the
thermal boundary conditions of the problem.

Consider now convective heat transfer in the parallel-plate channel
shown in Fig. 2. The flow enters the channel at a uniform temperature,
T0, and the channel walls are maintained at uniform temperaturesT1 and
T2. The thermal boundary conditions therefore entail the set of three
independent temperatures: T T T{ , , }0 1 2 . Heat transfer in the channel is
governed by these three boundary temperatures. More specifically, heat
transfer is driven by three temperature differences: = −T T TΔ 10 1 0,

= −T T TΔ 20 2 0 and = −T T TΔ 12 1 2. There are also three heat transfer
rates of interest: the heat transfer rate from the walls,Q1 andQ2, and the
rate of total heat transfer from the fluid; = − +Q Q Q( )0 1 2 .

In order to formulate the three-temperature problem shown in Fig. 2,
Equation (1) must be reconciled with the presence of multiple tem-
perature differences. This is customarily done by constructing a single
effective temperature difference through a combination of the in-
dependent (and sometimes dependent) temperatures. In internal-flow
problems, the mean fluid temperature, Tm, is usually used to represent
the fluid flow. The choice of Tm in two-temperature forced convection
problems (e.g. flow in an isothermal pipe) is advantageous because it
leads to a constant Nusselt number in the fully developed region. Note
that Tm is a dependent variable. Tm is also used to represent the flow in
multi-temperature problems. See for example reference [4]. The rate of
heat transfer from the channel walls can hence be expressed as shown
in Equation (2).

T0 (2)

For free convection in isothermal passages, following the seminal
work of Aung [11] on vertical channels, the flow is usually represented
by T0. The wall heat transfer rates are hence expressed as shown in
Equation (3) (e.g. Ref. [9]).

= − =Q h A T T i( )( 1,2)i i i 0 (3)

Similarly, using the mean wall temperature, = +T T T( )/2wm 1 2 , to
represent the channel walls and construct an effective temperature
difference, the rate of total heat transfer from the fluid can be expressed
as shown in either Equation (4) or Equation (5).

= − + = −Q Q Q h A T T( ) (2 )( )0 1 2 0 m wm (4)

= − + = −Q Q Q h A T T( ) (2 )( )0 1 2 0 0 wm (5)

As mentioned earlier, using an effective temperature difference to
formulate multi-temperature convection problems can be problematic.
In the case of forced convection in asymmetrically heated passages, this
approach leads to singularities in and temperature-dependence of the
Nusselt number. See Refs. [1,3,5,6,12,13] for detailed discussion of
these peculiarities. In addition, Equation (1) does not reflect the physics
of a multi-temperature problem in full. Alternatively, Q{ }i may be for-
mulated in terms of multiple driving temperature differences.

3. The Newton formulation extended

It is known from the mathematics of the problem that heat transfer
in the configuration shown in Fig. 2 is influenced by all the three in-
dependent temperatures, i.e. by the set of boundary temperatures, T{ }i .
More specifically, Q0, Q1 and Q2 are all functions of T{ }i . Equation (6) is
the mathematical expression of this observation (for a given combina-
tion of geometry, fluid properties and flow field).

=Q Q T({ })i i i (6)

As suggested by the Newton formulation (Equation (1)), it is the
difference between the boundary temperatures that drives heat transfer.
The functional relation between Q{ }i and T{ }i for a given combination of
geometry, fluid properties and flow field can accordingly be rewritten
as shown in Equation (7) to emphasize the role of the temperature
differences. Note that obtaining Equation (7) from Equation (6) entails
merely a linear change of variables.

=Q Q T({Δ })i i ij (7)

To recast Equation (7) into a form analogous to Equation (1), Qi can
be expanded in form of the summation shown in Equation (8), with TΔ ij
explicitly factored out of each term. Any nonlinearity with respect to
T{ }i is contained in the coefficients, C{ }ij .

∑ ∑= = −Q C T C T TΔ ( )i
j

ij ij
j

ij i j
(8)

Note that only independent temperatures appear in Equation (8). The
coefficient Cij characterizes the relationship between Qi and the driving
temperature difference TΔ ij. It is hence appropriate to call Cij a “func-
tionality coefficient”. The subscript ij is introduced to indicate that Cij
corresponds to a specific temperature difference, TΔ ij.

Applying Equation (8) to the three-temperature setting of Fig. 2, the
rate of heat transfer at the walls can be written as:Fig. 1. Forced convection in flow over an isothermal flat plate.

Fig. 2. Convection in hydrodynamically developed, laminar, constant-property
flow in a parallel-plate channel with isothermal walls— The asymmetric Graetz
problem.
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