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In this paper, a Haar wavelet collocation method (HWCM) is developed for PDEs related to the framework of so-
called inverse problem. These include PDEs with unknown time dependent heat source and unknown solution in
interior of the domain. To this end, a transformation is used to eliminate the unknown heat source to obtain a
PDE without a heat source. After elimination of unknown non-homogeneous term, an implicit finite-difference
approximations is used to approximate the time derivative and Haar wavelets are used for approximation of the

space derivatives. Several numerical experiments related to one- and two-dimensional heat sources are included
to validate small condition number of coefficient matrix, accuracy and simple applicability of the proposed

approach.

1. Introduction

Time-dependent inverse heat problems (IHPs) are among the chal-
lenging problems to be solved numerically. IHPs related to PDEs are
important due to numerous applications in science and engineering.
Such models are encountered in the mathematical modeling of aero-
space engineering, nuclear physics, metallurgy, non-destructive testing
in stress and strain analysis. Heat conduction problems, optics, com-
munication theory, oceanography, computer vision, cardiography and
medical imaging. Such models are in the focus of researchers due to
embedded multiple challenges in their numerical solution.

The general form of IHPs to be considered in this paper is:

Uy = f (U, Uyy, Uy, Uy, H(D), a<x,y<b, >0, 6}

where u is any physical phenomena, H(t) is illuminated as either a heat
or material source and f represents some physical law. The type of IHP
(1) is accompanied by some appropriate initial and boundary condi-
tions.

Since u and the source term H(t) are unknowns in the present case,
therefore, due to these unknown terms, existence, uniqueness and sta-
bility of the solution is often not assured. Such problems are usually ill-
posed [1,2] (as solution does not depend continuously on the boundary
and initial conditions) and the numerical results are sensitive to noise in
the input data. A number of solution procedures are available in the
literature for numerical solution of such inverse problems. In addition
to the challenge of ill-posedness, ill-conditioned system matrix of the
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discretized linear system is another bottleneck encountered in im-
plementation of numerical solution of such type of IHPs.

Various numerical procedures have been reported in the literature
[3,4] for numerical solution of IHPs. Implicit schemes are mostly used
for the numerical solution of IHPs, whereas the explicit schemes are not
much effective [5]. Method of fundamental solution for numerical so-
lution of IHPs are given in Refs. [6-8]. Some relevant numerical
methods which are focused on numerical solution of IHPs include
boundary element method (BEM) [9], iterative BEM [10,11], Tikhonov
regularization technique (TRT) [12,13], operator-splitting method
[14], lattice-free high-order finite-difference method [15], third-order
mixed-derivative regularization technique [16], Fourier regularization
method [17], three-spectral regularization methods [18], and radial
basis functions collocation method [19]. A recent work on time-de-
pendent inverse heat problems is given in Ref. [20]. Mallat has also
included the inverse problem as a separate chapter in his book [21].

During the last few years, the role of Haar wavelets in numerical
computing came to prominence. Researchers have recently used several
wavelets techniques for numerical approximation of differential and
integral equations. These include, wavelet-based method [22], wavelet
meshless methods [23], wavelet collocation methods [24-27], wavelet
Galerkin method [28] etc. A view of some of the previous contributions
can be found in Ref. [29] and the references there in. Advantages of
Haar wavelets for the numerical approximation of different types of
problems have been discussed in references [27,30-44,44,45]. Haar
wavelets have also been used in other areas like delamination
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identification [46], magnetic resonance imaging [47], image com-
pression [48], image processing [49], dose calculation [50], detecting
and localizing texture defects [51] and in signal processing [52].

Keeping in view the challenges faced in numerical solution of IHPs,
a simple and accurate numerical approach using Haar wavelets is
proposed in the current paper. The proposed approach produces a
stable numerical solution. Unlike the other IHPs specific numerical
techniques, the system matrix of the proposed method is comparatively
well-conditioned, which has pronounced effect on accuracy of the
method. Another advantage of the proposed approach is that different
types of boundary conditions can automatically be embedded in the
algorithm.

2. Haar wavelets

A Haar wavelet family for x € [a, b) is defined as

1 for xel[{,$),
hi(x)=1-1 for xe[S, &),

0  elsewhere, 2
where

t=a+ -, matrt-*TY  coarp-oktl
m m m

In the above definition integer m = 2/, j = 0,1, ...,J, represents the
level of the wavelet and integer k = 0,1, ...,m — 1 is the translation
parameter. Maximum level of resolution is J. The index i in Eq. (2) is
calculated using the formula i = m + k + 1. In case of minimal values
m =1, k=0, we have i = 2. The maximal value of i is 2M = 2/*1. We
define the following notations for integrals of the Haar wavelets;

Pt = [ hi)dx

X
Po() = [ Ry’
and
b
' = [ RaG)dx.
Using Eq. (2), we get

x—=¢ for xel§, ),
Pi(x)=1¢ —x for x€[8, &),
0 elsewhere,

%(X - §1)2 fOI X € [gp §2)5

(b-ay? _ %@3 —x)? for x€[$8),

Po(x) =4 4m
—q)2
% for x €, 1),
0 elsewhere,
and
cl = M.
4m?

3. Haar wavelets scheme for one-dimensional IHP

Consider the following type of one-dimensional IHP [20,53-56]:
u(x, t) = Uy (x, t) + H(t), a<x<b, t>0 3)
with initial and boundary conditions:

u(x, 0) = g(x),
u(a, t) = u,(t),
ux(a, t) = w (1),
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where u and H(t) are the unknown solution and the unknown heat
source respectively. For the identification of these unknowns, extra
information is provided as u,(b, t) = q,(t). In order to solve the IHP
numerically, we take the partial derivative of Eq. (3) w.r.t x and use the
transformation u, (x, t) = v(x, t) to get

VX, ) =ve(x, 1), a<x<b, >0 4

The transformed boundary conditions are

v(x, 0) = g'(x),
v(a, ) = w(1),
v(b, t) = q,(b).

To construct Haar wavelet approximation scheme, we start with the
second derivative approximation as

oM
Ve (3, 1) = cihi (x).
1; (6]

Integrating Eq. (5) w.r.t x, from a to x and then from a to b, we get

2M
vl ) = v, 1) + Y, By (x).

iz1 (6)
(@ £) = v(b, t) — v(a, t) _%C_ cH
T b-a =R @

Putting Eq. (7) in Eq. (6) we get

2M
Vx(x, [) = M + Z Ci(Pi,l(x) - CiH )

b-a oy b—-a (8)
Again integrating Eq. (8) w.r.t x, from a to x, we get
vix,t) =v(a,t) + (x— a)iv(b’ D-v@?D
b—a
2M cH
+ 2 ci(ﬂ-,z(x) - (x—a)— )
i=1 b-a Q)

Let t, be the current time level and t = ¢, + At be the next time level.
By applying the implicit scheme to the time derivative in Eq. (4) we get
v(x, 1) —v(x, L)
— 7 % = v, ).

AL o (X, 1)

By re-arranging we get
V(x, 1) — Aty (x, 1) = (X, L) 10)

Substituting Eq. (9) and Eq. (5) into the Eq. (10) and subsequent
discretization at the collocation points Xy =a + (b — a)%,
k =1,2, ..,2M leads to the following system of algebraic equations:

2M cH
> cf[a,z(xo ~ (o = @)~ Azhiow]
i=1 —-a
= _ _ b 1) —v(a, to)
= v (X, L) (V(a, to) + (% — @) > —a ) an
Eq. (11) can be written in matrix form as:
[Pz - (x—-a) d - AtH]c
b—a
= [v(x, t,) — (v(a, ) + (x — a)w)]
b—a 12

where
X =[x, %, ... 00m]7,

T
c=[cH ca...chl,

c = [ey, ¢3yenCam]”,
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