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A B S T R A C T

As a novel hybrid optimization approach, the single and multi-objective BAHPSO are investigated for thermal
designing of the cross-flow plate fin heat exchanger (PFHE) under given heat duty and pressure drop constraints.
Because both of the Particle Swarm Optimization (PSO) and Bess Algorithm (BA) are operating with a random
primary population of solutions, the current study combined their searching abilities for the first time, and
presented a novel searching procedure named BAHPSO. In the current investigation, Multi-Objective optimi-
zation (MO) of BAHPSO is simultaneously employed to acquire the maximum effectiveness and the minimum
total annual cost (TAC) of a heat exchanger as two contradict objectives and then results are compared with
MOPSO and MOBA. Hot and cold side length, fin frequency, number of fin layers, fin thickness, fin height, and
fin lance length are chosen as seven decision parameters. Also, a sensitivity analysis is performed to study the
impact of geometrical parameters on each objective function. Finally, accuracy and efficiency of the presented
algorithm is proven via illustrative single-objective optimization case studies which adopted from the references.
Results demonstrate that the BAHPSO can detect optimal shape with higher accuracy compared to other algo-
rithms.

1. Introduction

Compact heat exchanger (CHE) is one of the most significant kinds
of industrial heat exchangers (HEs). The key feature of CHEs is their
large heat exchange surface area per unit volume and can be manu-
factured in both types of tube-fin and PFHE [1]. High effectiveness,
compact size, light weight and multi-current capability are the notable
advantages lead to the vast use of PFHEs in the gas to gas applications,
including: helium and oxygen liquefaction plants, aerospace, air se-
paration plants, micro-turbines, transport industries such as motor and
aircraft engines, cryogenic, petroleum, and chemical industries [2].

Fins (extended surfaces) are the main factors decline the size and
enhance the heat transfer in CHEs [3,4]. Some common types of fins
used in such exchangers are plain fin strip, louvered fin, perforated fin,
pin and wavy fins [5]. PFHE is designed in a sophisticated process of
trial-and-error where geometric and operational variables are defined

to fulfill determined requirements namely outlet temperature, pressure
drop and heat duty. Many works have exclusively addressed HEs opti-
mization through traditional mathematical methods [6–10]. The design
of HEs by evolutionary algorithms has been recently paid special at-
tention. Computational optimization has been an active research area
for many decades. Swarm-based optimization algorithms (SOAs) imi-
tate nature's methods to find a way towards the optimum solution. A
newfound research field, the swarm intelligence presents characteristics
of self-organization and collaboration principles among group members
who are bio-inspired on social insect societies. Actually, optimization
techniques are being widely utilized in different aspects of human ac-
tivities, where some complicated situation that can be stated in a
mathematical model makes human beings take a decision. Several op-
timization algorithms have been designed according to the nature in-
spired analogy in the past few decades. These are frequently meta-
heuristics based on population, and they are also named general
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objective algorithms due to their usage to a great range of case studies.
Genetic algorithms (GA) [11,12], PSO [13], BA [14], Differential Evo-
lution (DE) [15], Evolutionary Programming (EP) [16], Ant Colony
Optimization (ACO) [17], etc. are among the popular optimization al-
gorithms.

For a non-trivial MO problem, there is not just one solution which
optimizes each of the objectives, simultaneously. In such cases, the ob-
jective functions (OFs) are called to be contradicting, and there are many
Pareto optimal solutions. For PFHEs, the researchers successfully em-
ployed MO using GA to gain a set of geometric design variables to get
two contradicting OFs, including total heat exchange rate, number of
entropy generation units (NEGUs), TAC, and effectiveness [2,18,19]. Rao
et al. [20] utilized a TLBO algorithm for achieving maximum effective-
ness and minimum TAC as two distinct OFs in two types of HEs. Ahmadi
et al. [21] minimized the NEGUs as well as the TAC in a PFHE con-
structed by offset-strip-fins. Yousefi et al. [22] employed a swarm in-
telligent procedure for MO of compact HEs. Results reflect the better
performance of the presented algorithm compared to the conventional
non-dominated sorting GA II. Very recently, new and/or hybrid algo-
rithms such as IMOCS [23], MO-ITLBO [24], BBO [25] and MOFSDE
[26] applied to MO of PFHEs. In state of single-objective optimization,
Mishra et al. [27] optimized a PFHE according to the second law of
thermodynamics in order to minimize the NEGUs for specific heat duty.
Also, Xie et al. [28] employed GA to optimize a CHE under pressure drop
restrictions. PSO algorithm is applied for the sake of a PFHE optimization
by Rao and Patel [29]. On the other hand, by using ICA, Yousefi et al.
[30,32] optimized a cross-flow PFHE to minimize NEGUs, TAC, and
weight under given restrictions. Results indicated the better efficiency of
ICA and Learning Automata based Particle Swarm Optimization (LAPSO)
compared to the traditional GA and PSO. Hadidi et al. [25] proposed the
BBO algorithm to optimize the design of PFHEs. Recently, Turgut [33]
employed a HCQPSO algorithm to optimize a PFHE in order to minimize
TAC, pressure drop, and heat exchange area under given limitations.
Their numerical results showed that this approach is able to generate
optimum solutions of higher accuracy in comparison to Improved Har-
mony Search (IHS) algorithm, ICA, and GAHPSO.

There exist also other SOAs whose names suggest possibly bee-in-
spired operations [34–37]. Nevertheless, to the author's best knowl-
edge, such algorithms do not closely mimic bees' behavior. More im-
portantly, they do not appear to employ the same strategies as those
bees implement while foraging for food. Thus, Pham et al. [38] studied
the first use of the BA to obtain the optimum design for mechanical
problems. They investigated two standard case studies: helical spring
and welded beams designing. The purpose of that investigation was to
examine the efficiency of the BA in comparison with the other opti-
mization algorithms. Results proved the excellence of BA compared to
the others. Also, Zarea et al. [39–42] successfully utilized a BA for
optimization of a cross-flow PFHE. Though, in spite of several attractive
features, the observations suggested that these algorithms do not al-
ways perform as expected. A careful balance between two contradicting
objectives, exploration (diversification) and exploitation (intensifica-
tion), to a large extent, determines the achievement of most of the
metaheuristics optimization algorithms. Exploration is necessary to
ensure that an adequate search in each part of the solution domain is
performed to provide a trustworthy approximate of the global op-
timum. However, the exploitation importance is due to focus the search
attempt on the best solutions found till now by exploring their neigh-
borhoods to achieve better solutions [43]. Search algorithms are able to
reach these two aims by employing local and global search methods, or
a hybrid of them. These algorithms are mostly called hybrid methods.
Van den Bergh [44] showed that PSO does not guarantee the con-
vergence to the global optimum. Specifically, when the dimensions of
the objective functions are high and multiple local optima exist si-
multaneously, PSO simply falls into local optima results in a low opti-
mizing precision or even failure. In this situation, the optimizing per-
formance will not be easily enhanced by merely enlarging the
population size or enhancing the evolution run-times.

Researchers have improved PSO efficiency by utilizing funda-
mentals of other well-known methods, for example selection, mutation
and crossover of GA and also DE in it. Efforts have also been made to
enhance the efficacy of other evolutionary algorithms including; GA,
DE, ACO, and etc. by incorporating velocity and position update

Nomenclature

A heat exchanger surface area (m2)
Aff free flow area (m2)
C heat capacity rate (W/K)
C cost ($)
Cp specific heat (J/kg K)
Cr Cmin/Cmax

c1,c2 acceleration parameter (for PSO algorithm)
Dh hydraulic diameter (m)
f fanning friction factor
f(x) objective function
g(x) constrain function
G mass flux velocity (kg/m2s)
h convective heat transfer coefficient (W/m2K)
H height of fin (m)
j Colburn factor
l lance length of the fin (m)
L heat exchanger length (m)
m mass flow rate (kg/s)
n fin frequency (fin/m)
Na number of fin layers for fluid a
Nb number of fin layers for fluid b
Ns number of entropy generation units (NEGUs)
NTU number of transfer units
P pressure (N/m2)
Pr Prandtl number

Q heat duty (W)
R specific gas constant (J/kg K)
Re Reynolds number
s fin spacing (m)
S
.

rate of entropy generation (W/K)
t fin thickness (m)
T temperature (K)
U overall heat transfer coefficient (W/m2K)
v particle velocity (for PSO algorithm)
w inertia weight (for PSO algorithm)

Greek symbols

ε effectiveness
μ viscosity (Pa s)
ρ density (kg/m3)
ΔP pressure drop (Pa)

SΔ entropy difference (W/kg K)

Subscripts

a, b fluid a and b
tot total
1 Inlet
2 Outlet
max Maximum
min Minimum
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