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A B S T R A C T

The purpose of this work is to carry out a meshfree implementation for the numerical simulation of two-di-
mensional transient incompressible free surface flows coupled with heat transfer. The Finite Pointset Method is
applied in order to solve the involved partial differential equations where the corresponding classical or strong
formulation is directly used instead of the corresponding weak form as needed for some other meshfree ap-
proaches. The incorporation of the boundary conditions is done in a direct and simple manner. The simplicity
and efficiency of this numerical method are demonstrated on two complex two-dimensional mould filling
processes.

Nomenclature

Ai PDE coefficient ⋅[ ] hw Heat transfer coefficient
at walls   °− −[W m C ]2 1B PDE coefficient ⋅[ ]

Ci PDE coefficient ⋅[ ] k Thermal conductivity
  °− −[W m C ]1 1F PDE coefficient ⋅[ ]

G PDE coefficient ⋅[ ] ks Thermal conductivity at
free surface   °− −[W m C ]1 1J Auxiliary matrix ⋅[ ]

L Auxiliary matrix ⋅[ ] kw Thermal conductivity at
walls   °− −[W m C ]1 1O Auxiliary matrix ⋅[ ]

P Differences matrix ⋅[ ] n Boundary normal vector
⋅[ ]

Pxy Differences matrix ⋅[ ] p Flow pressure [Pa]
R Auxiliary matrix ⋅[ ] p x( )k Linear independent

functions ⋅[ ]
T Fluid temperature °[ C] t Boundary tangential

vector ⋅[ ]
Tc Cold/reference

temperature °[ C]
v Flow velocity vector

  −[m s ]1

v0 Initial velocity   −[m s ]1

Th Hot temperature °[ C] ∼v Temporal flow velocity
  −[m s ]1

Tin Inlet temperature °[ C] w Weight function ⋅[ ]
∞T Ambient temperature °[ C] x Arbitrary fluid point [m]

W Weight matrix ⋅[ ] xk Particle position at k-th
iteration [m]b x( )k Coefficients in Taylor series

⋅[ ]
b Unknowns vector ⋅[ ] xi i-th particle position [m]
c Specific heat   °− −[J kg C ]1 1 Γd Dirichlet boundary ⋅[ ]
e Truncation error vector ⋅[ ] Γn Neumann boundary ⋅[ ]
f Arbitrary function value ⋅[ ] Φ Shape function ⋅[ ]
f͠ Approximated function

value ⋅[ ]
Ω A given fluid domain ⋅[ ]

f Function value vector ⋅[ ] β Coefficient of thermal
expansion ° −[ C ]1fb Distributed body force

  −[m s ]2

g Gravitational acceleration
vector   −[m s ]2

γ Weight function
parameter ⋅[ ]

ω Angular velocity −[s ]1

h Smoothing length in w [m] μ Fluid dynamic viscosity
 [Pa s]

hi k, Spatial differences ⋅[ ] ν Fluid kinematic viscosity
−[m s ]2 1

hs Heat transfer coefficient at
free surface   °− −[W m C ]2 1

φ Prescribed normal
derivative ⋅[ ]

ρ Fluid density   −[kg m ]3

τ Viscous stress tensor [Pa] at
free surface   °− −[W m C ]2 1

tΔ Time step [s]
xΔ i Spatial differences m[ ]
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ξ1 Auxiliary matrix ⋅[ ] yΔ i Spatial differences m[ ]
ξ2 Auxiliary matrix ⋅[ ] zΔ i Spatial differences m[ ]
∂Ω Boundary of fluid domain

⋅[ ]
ψj −j th unknown

component ⋅[ ]
D
Dt

Material derivative −[s ]1 ∼Ψ Unknowns vector ⋅[ ]

∇ Gradient operator −[m ]1 Re Reynolds number ⋅[ ]
Δ Laplace operator −[m ]2

1. Introduction

Heat transfer coupled with fluid flow arises in many engineering
applications, in particular for continuous casting processes, metal for-
ging and forming through mould filling processes in the foundry in-
dustry. Numerical methods for partial differential equations like Finite
Difference Methods, Finite Volume Methods and Finite Element
Methods have been widely used for such purposes, among others mesh-
based methods. However, mesh-based techniques need to use re-
meshing approaches in order to simulate problems with rapidly chan-
ging geometries as those involving free surface flows, which are both
computational and economically expensive for these kind of problems.
These drawbacks arise directly from the need of using predefined me-
shes to solve the governing equations [1]. Recently meshfree or
meshless methods have been developed as alternative to overcome part
of the difficulties arising when mesh-based methods are used. They are
classified in two main groups according to the type of equations on
which they are based [2,3].

One group of meshfree methods are based on the weak-form of the
corresponding partial differential equations and they are characterized
by being stable and accurate, therefore they naturally satisfy the im-
posed Neumann boundary conditions. However, the mandatory nu-
merical integration in this kind of methods makes them computation-
ally expensive. Moreover, they are not completely meshfree since they
require local or global meshes for integrating the derived matrix system
from the weak-form on the problem domain which constitutes a
drawback when they are used in problems involving high deformations.
The most common examples of such methods include the Element Free
Galerkin Method (EFG), the Reproducing Kernel Particle Method
(RKPM), the Diffuse Element Method (DEM), the Meshless Local Petrov-
Galerkin Method (MLPG), the Meshless Boundary Element Method
(MBEM), the Meshless Finite Volume Particle Method (MFVPM) and the
Natural Element Method (NEM). The second group of meshfree
methods are based on the strong-form of the corresponding partial
differential equations and they are characterized by being truly mesh-
free since they do not require any kind of meshing during the solving
process, moreover they are easy to implement and computationally
efficient. These facts make them especially attractive for the modeling
of problems involving highly changing geometries such as problems
with free surface flows. Nonetheless, many of them are unstable and
less precise than weak-form methods when Neumann boundary con-
ditions are involved. The most common examples of these kind of
methods include the Smoothed Particle Hydrodynamics (SPH), Finite
Pointset Method (FPM), Finite Point Method and the Radial Basis
Function Methods (RBF) [1–12].

In the context of meshfree methods, the starting point was SPH
proposed by Monaghan and Gingold in Refs. [13] and [14] for astro-
physical applications and it has also been taken as a common and
practical method applied to predicting complex fluid flows and me-
chanical processes, in particular for casting processes [15–17], due to
its ability to model the behaviour of complex free surfaces and their
ability to tolerate high levels of deformation as well as tracking the
deformation history [18–22]. Nonetheless, since the development of the
original version, SPH suffered instability, inconsistency and difficulties
in proper treatment of the boundary conditions so that over the next
years many improvements were incorporated to the original SPH

formulation. In this method, the domain is discretized by a set of mass
carrying particles which automatically guarantees the mass conserva-
tion. However, this leads to an additional drawback which is that the
quality of the discretization can not be easily adapted according with
the evolution of a problem since the addition or removal of particles
would produce a change in the considered material density [1,3,23].

One of the first reported scientific works using SPH for the simu-
lation of heat transfer and mass was done by Cleary [24]. Later on an
improved version of SPH was presented by Cleary and Monaghan for
heat transfer numerical simulation with a discontinuous and highly
temperature dependent conductivity [25]. Cleary proposed the use of
SPH for fluid flow simulation coupled with heat transfer and solidifi-
cation in casting [26]. Recently, Cao et al. reported an implementation
of SPH to simulate coupled fluid flow and heat transfer for mould filling
process of a disc [27]. Ren et al. presented an improved particle method
based on SPH for non-isothermal viscoelastic fluid simulation in mould
filling process [28].

A Lagrangian truly meshless approach that can overcome some of
the problems in SPH formulation and in other strong-form meshfree
methods, especially those related to the treatment of the boundary
conditions is FPM [23]. This method has been developed by Kuhnert in
Ref. [29] at the Fraunhofer-Institut für Techno-und Wirtschaftsmathe-
matik, in Kaiserslautern, Germany. FPM has shown to be far superior to
traditional mesh-based methods and some other meshfree method for
problems involving rapidly changing flow domains with respect to
time, multiphase or free surface flows [30–34], and radiative heat
transfer problems [35]. Similarly to SPH, FPM uses a set of finite nodes
scattered within a problem domain as well as on its boundaries, which
do not carry mass. This provides the flexibility to add or remove nodes
wherever and whenever needed and it lets to easily develop adaptive
schemes to locally modify the discretizing point cloud during a simu-
lation. All these facts make FPM especially suitable for practical pro-
blems involving fluid dynamics with rapidly changing domains.
Therefore, in this work the application of the FPM of Kuhnert to free
surface thermal flows in the context of mould filling processes is pro-
posed being the first time, to the authors knowledge, that this approach
is applied in order to solve practical engineering industrial processes in
particular with potential application in the area of metal casting. The
FPM practical implementation to thermal flows in this context, the
simplicity for the implementation and treatment of boundary condi-
tions on complex problems as well as the extension of the range of
applications for FPM is the motivation behind this research work.

The structure of the paper is as follows: section 2 introduces the
governing equations, section 3 shortly describe the numerical scheme
for solving the system of PDEs, section 4 presents the basic ideas behind
FPM followed by some issues regarding the numerical implementation
of FPM in section 5. The numerical results are reported in section 6 and
finally some conclusions are given in last section.

2. Governing equations

The governing equations during mould filling in metal casting,
considering that molten metal is incompressible, are the incompressible
Navier-Stokes equations in a laminar regime coupled with the con-
vective heat transfer equation. It is well known that during the cooling
process within the mould the molten metal experiments a transition
from Newtonian to Non-Newtonian fluid in the range between liquidus
and solidus temperatures in which solidification occurs. There are
several studies on the rheological behaviour of different metal alloys
which indicate huge discrepancies between different studies. Most of
the studies show viscosities that differ in several order magnitudes,
however, they agree on the fact that the viscosity follows a power-law
relationship for which different parameters, coefficients and reference
values are defined [36,37]. Moreover, there is no detailed reference
results in the scientific literature about cooling or solidification pro-
cesses during mould filling in metal casting to compare with. By these
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