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A B S T R A C T

When the mean free path of the dominant energy carriers in semiconductor materials, namely phonons, is
comparable to or larger than the characteristic length scale, scattering of phonons is rare, and the equilibrium
Bose-Einstein distribution is not restored locally. Four different models for modeling non-equilibrium (or quasi-
ballistic) heat transport in multi-dimensional geometry are critically assessed in this study. These include (1) the
hyperbolic heat equation (HHCE), (2) the first-order method of spherical harmonics or P1 approximation (P1),
(3) the frequency-dependent phonon Boltzmann Transport Equation (BTE), and (4) a hybrid approach in which
the BTE is hybridized with the P1 approximation (Hybrid). In addition, the Fourier law (Fourier) is also con-
sidered to assess its regime of validity. A two-dimensional sub-micron heat conduction problem is solved using
all of the aforementioned models, and their accuracy and efficiency are assessed. The full BTE solution with high
spatial and angular resolution is considered the benchmark solution for comparison. Both steady and unsteady
computations are conducted. It is found that at steady state, the accuracy of the models go hand in hand with the
degree of diffuse approximation incorporated into the model. At low temperature, where the degree of non-
equilibrium (ballistic nature) is dominant, the Fourier model completely fails. For transient computations, at
short times, all models other than the BTE exhibit significant error. Also, the HHCE is found to be significantly
superior to the Fourier model at short times.

1. Introduction

Typical feature sizes or characteristic length scales in modern-day
electronic and optoelectronic devices range between 10 and 100 nm.
Phonons, which are the dominant energy carriers in semiconductor
materials, have spectral mean free paths that overlap with this range.
For example, the mean free path of phonons in silicon at room tem-
perature is in the range 10–104 nm, with the estimated mean around
300 nm [1]. Consequently, heat conduction in such solid-state devices
cannot be described adequately using continuum transport equations,
most notably the Fourier law of heat conduction.

When the phonon mean free path is significantly larger than the
characteristic size of the system under consideration, phonons rarely
scatter, and their transport is so-called ballistic. In the ballistic regime,
the Knudsen number, which is the ratio of the mean free path of the
phonon to the characteristic length scale, is large, i.e., ≫Kn 1. On the
other hand, when the phonon mean free path is small in comparison to
the characteristic size of the system, they undergo numerous scattering
events, resulting in so-called diffusive transport. In this case, ≪Kn 1. In

the ballistic regime, the energy flux in a given direction (or intensity)
may be very large along directions that directly connect hot and cold
entities, while it may be small in other directions. Consequently, bal-
listic transport is strongly direction dependent. Since scattering re-dis-
tributes energy directionally, abundant scattering, as is prevalent in the
diffusive regime, makes the intensity more or less isotropic or direction
independent. Therefore, one may conclude that when scattering is in-
frequent, as in the case of ballistic transport, the directional nature of
phonon transport needs to be considered carefully. Conversely, when
scattering is dominant, the directional nature of phonon transport is
weak. The Fourier law of heat conduction essentially assumes that
phonons have vanishingly small Knudsen number, and consequently, a
perfectly isotropic intensity field locally. This phenomenological law is
purely diffusive and is based on the linear gradient diffusion hypothesis
[2]. It does not account for the wave nature of phonon transport and is
incapable of predicting heat conduction in the mixed ballistic-diffusive
(or quasi-ballistic) regime of transport, which is the primary focus of this
discussion.

Another major shortcoming of the Fourier law is that it disregards
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the finite propagation speed of the phonons. When the characteristic
time-scale (time taken by a phonon to traverse the characteristic length
of the system under consideration) is comparable to or smaller than the
phonon relaxation time-scale, the speed of propagation of the phonon
becomes relevant. In an effort to accommodate finite carrier (phonons
in the case of semiconductors) propagation speeds into heat transport
models, the Cattaneo equation [3–5] was proposed, which, in combi-
nation with the first law of thermodynamics (energy conservation) re-
sults in the so-called hyperbolic heat conduction equation. The hyper-
bolic heat conduction equation has been used extensively in heat
transfer analysis, especially in scenarios where pulsed heating or
cooling is prevalent. Another variation of this equation is the so-called
dual phase lag model [5].

Although the hyperbolic heat conduction equation accommodates
finite carrier speed and has the potential to treat quasi-ballistic thermal
transport, it is still not adequate for the treatment of phonon-mediated
thermal transport in semiconductors. This is because, as insinuated
earlier, phonons in semiconductors have a large range of frequencies,
and consequently, different group velocities and scattering rates.
Hence, a single relaxation time-scale, as appearing in the hyperbolic
heat conduction equation, is not adequate to capture the combined
effect of all phonons. Some phonons may be ballistic, while others may
be diffusive. Thus, although the hyperbolic heat conduction has been in
existence for more than half a century, it has found limited use for
predicting phonon mediated thermal transport in semiconductor ap-
plications.

The Boltzmann Transport Equation (BTE) for phonons [3] ade-
quately captures the mixed ballistic-diffusive nature of phonon trans-
port in semiconductors. It describes the spatio-temporal evolution of
the number density of an ensemble of phonons (or the energy carried by
the ensemble) of different frequencies as these phonons engage in free
flight and scattering. Incidentally, both the Fourier law and the Cat-
taneo equation can be derived from the BTE under a number simpli-
fying assumptions, some of which have already been mentioned earlier.
The Fourier law represents the zeroth moment of the BTE while the
Cattaneo equation represents the first moment. The phonon BTE is an
integro-differential equation in 7 independent variables: time, 3 spatial
coordinates, and 3 wave-vector coordinates. For an isotropic wave-
vector space, the 3 wave-vector coordinates may be reduced to 2 di-
rectional (or angular) coordinates, and frequency. Furthermore, under
the single-time relaxation approximation, the scattering term of the BTE
can be significantly reduced (linearized) resulting in a 7-dimensional
partial differential equation. Even the linearized BTE, however, is
challenging to solve because of its high dimensionality. A number of
methods have been used to date to numerically solve the phonon BTE.
These include the Monte Carlo method, the lattice Boltzmann method,
and deterministic discretization-based methods. The Monte Carlo
method is suitable for the inclusion of complex physics such as dis-
persion, polarization, and various scattering mechanisms [6–10].
However, it is expensive for practical engineering applications, espe-
cially when high spatial resolution is sought. Recently, variance re-
duction techniques have been adopted for phonon transport, thereby
enabling Monte Carlo simulations of phonon transport in realistic three-
dimensional structures [11]. To date, the lattice Boltzmann method has
found only limited use [12,13].

Deterministic solution of the phonon BTE is based on discretization
in all 7 dimensions [14–17]. In such methods, spatial discretization is
performed using either the finite difference, the finite element or the
finite volume method [18], while angular discretization is performed
using the discrete ordinates method and its variant, namely the control
angle discrete ordinates method [19,20]. The finite volume method is
generally preferred over the other two methods for spatial discretiza-
tion since it guarantees flux conservation, while the control angle dis-
crete ordinates method (CADOM) is preferred over the standard dis-
crete ordinates method since it mitigates ray effects [19–21]. Until
recently, the solution to the three-dimensional (3D) frequency-

dependent (or non-gray) phonon BTE has been prohibitive due to the
extreme memory and computational time requirements. Earlier studies
[22] and some recent studies [23] have reported solution to the two-
dimensional (2D) non-gray BTE with the goal to understand hot spot
generation and dissipation in device-like structures. Very recently,
Mazumder and co-workers [24,25] have demonstrated solution to the
full non-gray BTE in 3D heterostructures discretized using an un-
structured mesh. The 2D non-gray BTE has also been used to mimic
time-domain thermo-reflectance experiments by the same group [26],
wherein extremely short time-scale phenomena need to be resolved.
The most notable recent work on the solution of the 3D non-gray BTE is
the one reported by Ali et al. [24], who demonstrated solution to the
phonon BTE in a 3D device-like structure discretized using 604,054
tetrahedral control volumes, 400 angles, and 40 spectral intervals (or
bands), resulting in 9.7 billion unknowns. These computations were
performed using 400 processors in parallel, and required 156 GB of
RAM and 1.1 h per time step. These extreme computational require-
ments are indicative of the fact that although it is now possible to solve
the 3D non-gray BTE in systems of practical interest, the computations
are still extremely time-consuming.

While it is possible to reduce computational times further by capi-
talizing upon ongoing advances in high performance computing, what
is incumbent is the development of methods for solving the BTE that
capitalize upon the physics of phonon transport to improve efficiency of
solution. To this end, several approaches have been recently explored.
The fundamental premise that in the ballistic regime, the phonon in-
tensity is strongly directional, while in the diffusive regime it is more or
less isotropic, has been used to develop hybrid solution strategies for
the BTE. One of the earliest hybrid solution strategies to the BTE was
proposed by Chen and co-workers [27–29]. In their approach, the
phonon intensity was assumed to be a superposition of a ballistic in-
tensity and a diffusive intensity. The diffusive intensity, by virtue of
being isotropic, was determined by invoking the method of spherical
harmonics. The resulting model is the so-called ballistic-diffusive
equations (BDE) of phonon transport. In the BDE formulation [27–29]
proposed by Chen and co-workers, the diffusive component was de-
termined using a standard elliptic partial differential equation solution
procedure, while the ballistic component was determined using the
surface-to-surface exchange formulation and geometric viewfactors
[29], which makes the method somewhat restrictive for complex geo-
metries. Mittal and Mazumder [30,31] developed an alternative for-
mulation, in which the ballistic component of the phonon intensity is
determined instead using the CADOM, making the solution algorithm
amenable to large-scale computations in complex geometries. The
method has been successfully demonstrated for the solution of the
transient BTE in complex 3D nanostructures [31]. Both of the afore-
mentioned hybrid methods were demonstrated for the gray (frequency
independent) BTE only, and important physics pertaining to phonons,
namely dispersion and polarization effects, were not considered. In an
effort to include such relevant physics while improving computational
efficiency, ballistic-diffusive hybridization of the frequency-dependent
(non-gray) phonon BTE has also been pursued by some researchers. Loy
et al. [23] proposed a strategy in which the Fourier law is directly used
for frequencies for which the spectral Knudsen number is small, and the
full BTE for frequencies for which the spectral Knudsen number is large.
The model has been referred to as the hybrid Fourier-BTE model [20].
Recently, Allu and Mazumder [32] proposed a similar hybridization
strategy, with the exception that in their formulation, in the diffusive
regime, the Fourier law is not used. Rather the first-order method of
spherical harmonics (P1 approximation) is invoked to reduce the BTE.
In the P1 approximation, the phonon intensity is not assumed to be
perfectly isotropic (independent of direction), but rather, linearly
varying with direction. This extension embodies weak directional var-
iations of the diffuse component of the phonon intensity, and is more
appropriate since perfect isotropy of the intensity is only an idealiza-
tion. Another hybrid model that has been proposed is the so-called
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