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a b s t r a c t

An edge-based smoothed finite element method (ES-FEM) is extended to deal with the transient thermo-
elastic problems. For this edge-based smoothed finite element method, the problem domain is first
discretized into a set of triangular elements, and the edge-based smoothing domains are further formed
along the edges of the triangular meshes. In order to improve the accuracy, the ES-FEM utilizes the
smoothed Galerkin weak form to obtain the discretized system equations in smoothing domains, in
which the gradient field is obtained using a gradient smoothing operation. After applying these
approaches, the numerical integration becomes a simple summation over each edge-based smoothing
domain. The transient thermo-elastic problem is decoupled into two separate parts. At first, the
temperature field is acquired by solving the transient heat transfer problem and it is then employed as an
input for the mechanical problem to calculate the displacement and stress fields. Several numerical
examples with different kinds of boundary conditions are investigated. It has been found that ES-FEM
can achieve better accuracy and higher convergence in energy norm than the finite element method
(FEM) when using the same triangular mesh.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

The analysis of transient thermo-elastic problems is of great
importance in many practical engineering problems [1e3]. As it is
quite difficult to find analytical solution for such problems with
complex geometry and boundary conditions, numerical methods
are widely employed to analyze these problems. In the past several
decades, a number of numerical techniques have been developed
and extended to solve thermo-elastic problems.

The finite element method (FEM) has been successfully utilized
to solve heat transfer and thermo-elastic problems for a long time
[4,5]. Chaudouet [6] applied the direct boundary integral equation
(BIE) method to elastic analyses under thermal loading. Demirdzic
[7] developed the finite volume (FV) method to analyze the
behavior of continua under thermo-mechanical loads, which is
based on the finite volume discretization. Recently, a node-based
smoothed point interpolation method (NS-PIM) is applied by Wu
[8,9] to analyze thermo-elastic problem, which can produce an
upper bound solution. Ching [10] employed the meshless local
PetroveGalerkin (MLPG) method to investigate the transient
thermo-mechanical response of two-dimensional solids. Singh

[11e13] utilized the element free Galerkin (EFG) method to obtain
the numerical solution of heat transfer and thermo-elastic fracture
problems, inwhich the approximation function is constructed from
a set of scattered nodes. Hematiyan [14] used the boundary
element method (BEM) to analyze transient thermo-elastic prob-
lems, in which the problem domain is discretized using boundary
elements.

Among all these methods, the FEM has been found to be
a dominant numerical method. However, it has an inherent
shortcoming known as the overly-stiff phenomenon, especially
when linear triangular elements are used for two-dimensional
(2-D) problems. To tackle this problem, Liu [15,16] has applied the
smoothing technique in a number of meshing free and finite
element settings. A generalized gradient smoothing technique has
been utilized to establish the smoothed Galerkin weak form [17].
Liu et al. [18e20] have also proposed several ways (node-based,
edge-based and cell-based) to construct the smoothing domains. It
has been found that in the analysis of 2-D solid mechanics prob-
lems, the edge-based smoothed finite element method (ES-FEM)
can give ultra-accurate solution especially when triangular meshes
are used compared with the FEM.

In this work, the ES-FEM is further extended to solve transient
thermo-elastic problems. At first, the computational domain is
discretized into a set of triangular elements and the smoothing
domains associated with the edges of the triangles are created
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based on these triangular meshes. The discretized system equa-
tions are derived using the smoothed Galerkin weak form. Finally,
both the transient temperature field and the stress field are
calculated by the ES-FEM. Numerical examples with various kinds
of boundary conditions are also presented to illustrate the validity
of the ES-FEM for the transient thermo-elastic analysis through
comparing the numerical results with those obtained by the FEM
and the finite element commercial software ABAQUS.

2. Thermal analysis

2.1. Thermal governing equations and boundary conditions

It has been assumed that the material obeys Fourier’s Law of
heat conduction. Equations of the transient thermal analysis can be
given by

rc
vTðx; y; tÞ

vt
¼ �

�
vRx
vx

þ vRy
vy

�
þ Qðx; y; tÞ (1)
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�
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�
vT
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�
(3)

where T(x,y,t) is the temperature at time t, Q(x,y,t) is the rate of
internal heat generation, r is the density, c is the specific heat, kx
and ky are the thermal conductivities, Rx and Ry are the rates of the
heat flow in the x, y directions, respectively. The initial condition
and thermal boundary conditions are simply stated here as

Initial condition : T ¼ T0 (4)

Dirichlet boundary : T
��
G ¼ Tw (5)

Neumann boundary : �k
vT
vn

��
G ¼ q (6)

Robin boundary : �k
vT
vn

��
G ¼ hcðT � TNÞ (7)

Radiation boundary : �k
vT
vn

��
G ¼ be

�
T4 � T4N

�
(8)

where T0 is the initial temperature, Tw is the known temperature,
TN is the environmental temperature, q is the prescribed heat flux,
hc is the convection coefficient, n is the unit outward normal to the
boundary. b is the StefaneBoltzmann constant, e is the emissivity
and G represents the boundary. It should be noted that Eq. (6) will
change into the Adiabatic boundary when q is equal to zero.

2.2. Transient heat transfer analysis using ES-FEM

In the ES-FEM, the problem domain is also discretized using
triangular elements as in the FEM. However, the stiffness matrices
are calculated based on smoothing domains associated with the
edges of the triangles, and the strain smoothing technique is used.
The domain U is divided into M triangular elements with N edges,
as shown in Fig. 1. After sequentially connecting two end points of
the edge and the centroids of the triangle elements, smoothing
domain of each edge is constructed. It can be clearly seen that,
U1WU2W. UN¼ U andUiXUj ¼ f (isj, i¼ 1, 2,., N, j¼ 1, 2,., N).

In a triangular element, the temperature field T is interpolated
using temperatures at the nodes of the element with linear shape
functions which are the same as in the standard linear FEM.

Tðx; y; tÞ ¼
X3
i¼1

HiTiðtÞ (9)

where Ti(t) is the nodal temperature at node i and time t, Hi is the
linear shape function. The temperature gradient g can bewritten by

g ¼ BTTd (10)

BT ¼ ½BT1;BT2;BT3� (11)

BTi ¼
�
Hi;x;Hi;y

�T (12)

where Td is the matrix of nodal temperature, BT is the temperature
gradient interpolation matrix. In order to overcome the overly-stiff
phenomenon of the FEM, strain smoothing technique is utilized to
soften the discrete system. In the kth smoothing domain Uk, which
is formed by assembling two sub-domains Uk1 and Uk2 of two
neighboring elements, the smoothed temperature gradient ~gk is
expressed as

~gk ¼
Z
Uk

gkfkdU (13)

Nomenclature

b body force, N
e emissivity
f boundary traction, N
hc convection coefficient, W/(m2 �C)
k thermal conductivity, W/(m �C)
N number of edges
n unit outward normal component
q heat flux, W/m2

T0 initial temperature, �C
Tw known temperature, �C
TN environmental temperature, �C

Greek symbols
F shape functions for mechanical analysis

~s;~3 smoothed stress and strain
3
E elastic strain
3
T thermal strain
d delta operator
l, m, E, n Lamé’s and elasticity constants
a thermal expansion, 1/�C
b StefaneBoltzmann constant
r density, kg/m3

U problem domain
G global or local boundary

Subscripts and superscripts
i, j tensor indices
k smoothing domain for edge k
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