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a b s t r a c t

This paper addresses two issues usually encountered when simulating thermal processes in forming
processes involving tape-type geometries, as is the case of tape or tow placement, surface treatments, /
The first issue concerns the necessity of solving the transient model a huge number of times because the
thermal loads are moving very fast on the surface of the part and the thermal model is usually non-linear.
The second issue concerns the degenerate geometry that we consider in which the thickness is usually
much lower than the in-plane characteristic length. The solution of such 3D models involving fine
meshes in all the directions becomes rapidly intractable despite the huge recent progresses in computer
sciences. In this paper we propose to consider a fully space-time separated representation of the
unknown field. This choice allows circumventing both issues allowing the solution of extremely fine
models very fast, sometimes in real time.

� 2012 Elsevier Masson SAS. All rights reserved.

1. Introduction

Industrial processes generally need efficient numerical simula-
tions in order to optimize the process parameters. In the case of
composite materials, even if the thermo-mechanical models are
nowadays well established, efficient simulations need for further
developments.

In this work we are considering some issues, analyzed from
a methodological point of view, without considering its industrial
counterpart that requires the coupling of different numerical
procedures and richer physics.

Thermal models involved in the numerical modeling of
composite tape placement processes introduce, despite its geomet-
rical simplicity, a certain number of numerical difficulties related to:
(i) the very fine mesh required due to the small domain thickness
with respect to the other characteristic dimensions as well as to the
presence of a thermal source moving on the domain surface; and (ii)
the long simulation times induced by the low thermal conductivity
of polymers and the movement of the heat source;

The solution by using standard discretization techniques can be
extremely expensive from the computing time point of view. For
example, if onewants to simulate a thermal problem in a ply whose

thickness is 1000 times lower than its length (which is a quite
common ratio), the use of only 100 nodes in the thickness will lead
to use 105 nodes in the length to ensure the geometrical quality of
the mesh on which standard discretization techniques, like the
finite element method, proceed. The total amount of nodes is then
10 millions even when considering a 2D thermal model. In this
situation solving a 3D model seems a challenge. Indeed, when the
model involves 1012 (that implies a reasonable number of nodes, of
the order of 104 in each coordinate direction of a 3D model)
numerical complexity reaches the current computer capabilities. In
addition, in transient non-linear models the problem must be
solved at least once at each time step, time step that can be
extremely small due to stability constraints.

In order to reduce the computing time needed for solving large
numerical models, different ways have been explored. One consists
in using super high performance computing facilities. Others
strategies consider subdomains, multigrid techniques or the use of
efficient preconditioners. Another efficient way to enhance the
simulation capabilities is to reduce the size of the approximation
basis employed for approximating the unknown field. In the finite
elements method, at least one approximation function is associated
to each node. Thus, the number of degrees of freedom scales with
the number of nodes. Reduced modeling lies in using a reduced
number of “appropriate” approximation functions defined in
general in the whole domain and able to approximate up to
a certain level of accuracy the problem solution at each time. Thus,
the number of approximation functions (and by the way the
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number of degrees of freedom) becomes independent of the mesh
size. The arising issue is how to calculate these “appropriate”
functions defining the reduced approximation basis?

There are several possibilities. A first possibility lies in the use of
the Proper Orthogonal Decomposition e POD e that was employed
in a former work [9] for addressing similar issues to the ones
concerned by the present work. In what follows we are describing
how the POD extracts relevant information for building-up
a reduced approximation basis.

1.1. Extracting relevant information by applying the proper
orthogonal decomposition

We assume that the field of interest u(x,t) is known at the nodes
xi of a spatial mesh for discrete times tm ¼ m$Dt, with i˛½1;/;M�
and m˛½0;/; P�. We use the notation uðxi; tmÞhumðxiÞhumi and
define um as the vector of nodal values umi at time tm. The main
objective of the POD is to obtain the most typical or characteristic
structure X(x) among these um(x), cm. For this purpose, we solve
the following eigenvalue problem [32]:

CX ¼ aX: (1)

Here, the components of vector X are X(xi), and C is the two-
point correlation matrix

Cij ¼
XP
m¼1

umðxiÞ$um
�
xj
�
; (2)

whose matrix form reads:

C ¼
XP
m¼1

um$ðumÞT ; (3)

which is symmetric and positive definite. With the matrix Q
defined as

Q ¼
�
u1;/;uP

�
(4)

We have

C ¼ Q$Q T : (5)

1.2. Building the POD reduced-order model

In order to obtain a reduced model, we first solve the eigenvalue
problem Eq. (1) and select the N eigenvectors Xi, i ¼ 1,/,N, asso-
ciated with the N eigenvalues belonging to the interval defined by
the highest eigenvalue a1 and a1 divided by a large enough number
(e.g. 108). In practice, N is found to be much lower than M. These N
eigenfunctions Xi are then used to approximate the solution um(x),
cm. To this end, let us define the matrix B ¼ (X1/XN).

Now, let us assume for illustrative purposes that an explicit
time-stepping scheme is used to compute the discrete solution
umþ1 at time tmþ1. One must thus solve a linear algebraic system of
the form

Gmumþ1 ¼ Hm: (6)

A reduced-order model is then obtained by approximating umþ1

in the subspace defined by the N eigenvectors Xi, i.e.

umþ1z
XN
i¼1

Xi$T
mþ1
i ¼ B$Tmþ1: (7)

Eq. (6) then reads

Gm$B$Tmþ1 ¼ Hm; (8)

or equivalently

BT$Gm$B$Tmþ1 ¼ BT$Hm: (9)

The coefficients Tmþ1 defining the solution of the reduced-order
model at the time step mþ1 are thus obtained by solving an alge-
braic system of size N instead of M. When N � M, as is the case in
numerous applications, the solution of Eq. (9) is thus preferred
because of its much reduced size.

Remark 1 The reduced-order model Eq. (9) is built a posteriori
by means of the already-computed discrete field evolution. Thus,
one could wonder about the interest of the whole exercise. In fact,
two beneficial approaches are widely considered (see e.g.
[6,8,18,24e26,31,32]). The first approach consists in solving the
large original model over a short time interval, thus allowing for the
extraction of the characteristic structure that defines the reduced
model. The latter is then solved over larger time intervals, with the
associated computing time savings. The other approach consists in
solving the original model over the entire time interval, and then
using the corresponding reduced model to solve very efficiently
similar problems with, for example, slight variations in material
parameters or boundary conditions. We considered some years ago
an adaptive technique for constructing the reduced basis without
an “a priori” knowledge [2,31,32], following the original proposal in
[30].

Remark 2 The construction of the reduced bases is not unique.
There are many alternatives. Some ones introduce some improve-
ments on the POD methodology just described, as is the case of the
Goal Oriented Model Constrained Optimization approach (see [7]
and the references therein) or the modal identification method
(see [13] and the references therein). The Branch Eigenmodes
Reduction Method combined with the amalgam method is another
appealing constructor of reduced bases [34].

Remark 3 The application of the POD allows to express the
unknown function u(x,t) in the reduced space-time separated form

uðx; tÞz
Xi¼N

i¼1

TiðtÞ$XiðxÞ (10)

where Xi(x) are space dependent function (the eigenfunctions
resulting from the application of the POD) and Ti(t) are its coeffi-
cients that only depend on time.

1.3. From POD to PGD

Despite the fact of having proposed techniques able to define
the reduced basis without an “a priori” knowledge, the robustness
of such strategies is not ensured and in some cases these strategies
do not converge. In that case one could consider as starting point
a separated representation of the problem solution u(x,t)

uðx; tÞz
Xi¼N

i¼1

TiðtÞ$XiðxÞ (11)

and then inject it in the weak form of the problem. This procedure
allows computing the functions involved in the separated approx-
imation without any “a priori” knowledge. This strategy was
proposed by Pierre Ladeveze in the 80’s, and he called it radial
approximation [19,20,23].

Inspired by this procedure one could try to generalize this
representation to the multidimensional fields as was proposed
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