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a b s t r a c t 

A dynamic two-scale model is developed for describing the mechanical behavior of suspensions of permeable 
ellipsoidal particles. The particle dynamics in the proposed model is described in terms of particle positions as well 
as conformation tensors that capture their size, shape, and orientation. Using non-equilibrium thermodynamics, 
the macroscopic fluid-dynamics and the particle dynamics on the microstructural level are mutually coupled in 
a consistent manner. So doing, the link between the macroscopic behavior, e.g. stresses, and the dynamics of the 
microstructure, e.g. particle shape and size, is established. Finally, the model is cast into a form in which the 
shape tensor is split into its volumetric and isochoric shape contributions, making it possible to model particles 
with both shape-preserving size-changes (e.g. swellable particles) and volume-preserving shape-changes (e.g. 
incompressible yet deformable particles). The size-shape model distinguishes itself in unifying prior knowledge 
of purely-shape models with that of purely-size models by appropriate choices of the Helmholtz free energy and 
the generalized mobility. 

1. Introduction 

A wide variety of applications nowadays relies on materials where 
their overall properties can be tailored to meet specific requirements. 
Soft, permeable particle suspensions provide the versatility required to 
achieve exactly this purpose, making them particularly useful in paints 
and inks [1,2] , pharmaceuticals and cosmetics [3,4] , and foods [5] . The 
fascinating properties of the overall suspension emanate primarily from 

the properties of the individual particles. On the one hand, the elastic- 
ity of the supporting network of the individual particle gives rise to its 
elastic behavior. The flow of the viscous suspending solvent through this 
elastic network, on the other hand, results in its viscoelastic behavior. 

The rich behavior of permeable-particle suspensions emerges from 

the fact that permeable particles can undergo size and shape changes 
in response to different stimuli. For instance, permeable particles in a 
sufficiently-jammed state undergo rate-dependent volume changes as 
the viscous background solvent is expelled from the interior of the par- 
ticle [6,7] . The shape changes in permeable particles are induced by 
steric effects in concentrated suspensions as a particle impinges against 
neighboring particles [7] . While elastic shape-changes can be accounted 
for through soft-interaction potentials [8–10] , the effect of the viscous 
background solvent on both the shape and size dynamics requires ac- 
counting for the particle internal degrees of freedom explicitly. 
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The dynamic two-scale model developed by Hütter et al. 
[11] presents a new class of models that provide insight about the de- 
grees of freedom of permeable particles. The model accounts for the 
rate-dependent size change of the particles by treating the particle size 
as a separate degree of freedom. The developed model, however, focuses 
on spherical particles for which the particle geometry is described by its 
radius. Using this model, we have highlighted the effect of the size dy- 
namics on the equilibrium properties [6] , the flow properties [12] , and 
the stress-relaxation behavior [13] of permeable-particle systems. This 
paper aims at generalizing the model developed by Hütter et al. [11] to- 
wards non-spherical particles. This requires modeling the particle shape 
explicitly, which naturally includes both the size and shape dynamics. 

An essential step in the model development is the suitable choice of 
a variable that describes the particle shape. Several morphology mea- 
sures have been introduced in the past, particularly in the field of mix- 
ing of immiscible fluids. The interfacial tensor in the Doi–Ohta model 
[14,15] provides an average description of the morphology of the en- 
tire dispersed phase in emulsions and immiscible polymer blends. In the 
present paper, a tensor is used for each individual particle, due to our in- 
terest in a many-particle description, as described in the following. For 
concentrated permeable-particle suspensions, tracking the exact parti- 
cle surface can be computationally expensive. Therefore, we consider 
particles of ellipsoidal shape for simplicity. Ellipsoids cover a wide va- 
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riety of shapes, ranging from platelets to spheres to threads [16,17] . 
Ellipsoidal droplet shapes are commonly used as an approximation of 
the microstructure of fluid blends. In fluid mixtures, this coarse-grained 
description depicts the local features of the microstructure, such as the 
size, shape, and orientation. An ellipsoid centered at the origin of the 
coordinate system is described by a second-rank tensor whose eigen- 
values are the square of the (inverse) semi-axes lengths of the ellipsoid 
and whose eigenvectors give the direction of the principal axes of the 
ellipsoid. In general, the surface of an ellipsoid at a position Q of the 
coordinate system and whose axes are not necessarily aligned with the 
coordinate system is described by ( 𝒓 − 𝑸 ) ⋅ 𝑺 ⋅ ( 𝒓 − 𝑸 ) = 1 , with positive 
definite tensor S . Several efforts have been dedicated to developing mod- 
els describing the evolution of such tensors in response to deformation 
fields. For instance, the Maffettone and Minale (MM) model [18] de- 
scribes the dynamics of ellipsoid droplets in a general flow field, based 
on a phenomenological description of the driving force and the relax- 
ation mechanism. It has been shown experimentally and numerically 
how the internal morphology of a system affects its overall properties 
[19,20] . Rheology can be even a measure for probing the morphology 
[21] . Iza and Bousmina have highlighted the degree of complexity of the 
morphologies developed in a fluid-fluid mixture subjected to shear and 
upon cessation of flow [19] . This elucidates the importance of accurately 
and consistently describing the stress as a function of the microstructure. 
In order to achieve this, the evolution of the ellipsoidal tensor in affine 
deformation is used as the starting point. For purely affine deformation, 
each point in the ellipsoid is subjected to a velocity gradient 𝑳 = ( ∇ 𝒗 ) T , 
where 𝒗 is the applied flow field. Consequently, the evolution of the el- 
lipsoid is given by 𝑺̇ = − 𝑳 

T ⋅ 𝑺 − 𝑺 ⋅𝑳 , which is a lower-convected time 
derivative [17] . The evolution of the ellipsoid in affine deformation can 
be equivalently described in terms of the inverse tensor 𝑻 = 𝑺 

−1 . The 
evolution of T is upper-convected, that is 𝑻̇ = 𝑳 ⋅ 𝑻 + 𝑻 ⋅𝑳 

T [17] . While 
the evolution of the particle-related ellipsoidal tensors in this paper is 
upper convected in nature, the interfacial tensor in the Doi–Ohta model 
[14,15] has lower-convected characteristics. 

In this work, the dynamic two-scale model developed by Hütter et al. 
[11] for permeable particles is extended to also account for the me- 
chanics and dynamics of the particle shape. Each particle is described 
with an ellipsoidal tensor. Non-equilibrium thermodynamics, namely 
the general equation for the non-equilibrium reversible-irreversible cou- 
pling (GENERIC) [22–24] , is used to ensure that the developed model is 
thermodynamically consistent. The developed model is expressed in the 
form of stochastic differential equations, that are suitable for particle- 
based simulations, i.e. Brownian dynamics simulations. 

This paper is organized as follows. In Section 2 , the weak formula- 
tion of GENERIC is briefly described. This is used in Section 3 to develop 
a dynamic two-scale model for permeable particles that undergo shape 
and size changes. In Section 4 , the model is presented in a form suit- 
able for particle-based simulations. In Section 5 , the model is split into 
purely-size and purely-shape dynamics, and applied to the case of non- 
interacting ellipsoidal particles. Finally, the paper is concluded with a 
discussion in Section 6 . 

2. Methods: Weak formulation of GENERIC 

The general equation for the non-equilibrium reversible-irreversible 
coupling (GENERIC) [22–24] is exploited in this paper in order to de- 
velop a model that mutually couples mesoscopic degrees of freedom to 
macroscopic ones in a consistent manner. In this work, the weak for- 
mulation of GENERIC formulated in [11,25] is used, summarized in 
the following. For a closed system, the weak formulation of GENERIC 

[11,25] imposes the following conditions on the reversible (rev) and ir- 
reversible (irr) contributions to the time evolution of the energy E and 
the entropy S , respectively, 

𝐸̇ |rev = 0 , (1a) 

𝑆̇ |rev = 0 , (1b) 

𝐸̇ |irr = 0 , (1c) 

𝑆̇ |irr ≥ 0 . (1d) 

The conditions (1) depict the following features of the system. On the 
one hand, the energy and entropy remain unaffected by the reversible 
dynamics, which is captured by (1a) and (1b) , respectively. On the other 
hand, the irreversible dynamics does not affect the total energy and leads 
to non-negative entropy changes, as given by (1c) and (1d) , respectively. 
It is noteworthy that, although the weak formulation of GENERIC (1) is 
less restrictive than its full formulation, it retains many of the essential 
features. Particularly, the degeneracy conditions in the full GENERIC 

formulation are reflected in conditions (1b) and (1c) . 
Using the chain rule, conditions (1) have implications on the evolu- 

tion of the system variables x . The chain rule for a general functional A 

is given by 

𝐴̇ [ 𝒙 ] = 

∑
𝐼 

∫
𝛿𝐴 

𝛿𝑥 𝐼 ( 𝒛 ) 
𝜕 𝑡 𝑥 𝐼 ( 𝒛 ) 𝑑 𝒛 , (2) 

where 𝛿A / 𝛿x I is a functional derivative of A with respect to x I , z is the 
integration variable, and the summation runs over all variables in x . 

In the following, the conditions on the energy and entropy, (1), are 
used to develop a model for systems of permeable particles. This is 
achieved by, first choosing a sufficient set of variables describing the 
system, and second specifying the functionals of energy and entropy in 
terms of the chosen variables. 

3. Model development 

Similar to the model developed earlier in [11] , a two-scale model 
is developed in this work, where both scales are mutually coupled. For 
instance, a deformation applied on the macroscopic level distorts the 
microstructure, this results in unbalanced interactions between the par- 
ticles, which in turn give rise to macroscopic stresses. In this section, 
we derive a model that consistently couples both scales, particularly by 
providing a constitutive relation for the stress in terms of mesoscopic 
variables. 

3.1. Choice of variables 

For the two-scale model described for spherical particles [11] , the 
macroscopic level, i.e. the solvent-particle system, is treated as a non- 
isothermal fluid. The macroscopic variables are, hence, the mass density 
𝜌( r ), the momentum density 𝒖 ( 𝒓 ) = 𝒗 ( 𝒓 )∕ 𝜌, where v is the macroscopic 
velocity field, and the temperature field ϑ( r ). In all these variables, r is 
the macroscopic position. On the mesoscopic level, overdamped particle 
dynamics is considered. That is the particle velocities relax to the equi- 
librium distribution much faster than the time required for the applied 
deformation to cause a significant change in velocity. The reader is re- 
ferred to [11] for more detail. Mesoscopically, each particle i is, hence, 
described with the position of its center Q i measured relative to r , and 
also by a tensor that captures the shape of the particle T i . The latter is 
introduced in place of the particle radius in [11] , in order to describe 
the shape and size of the particle. 

For practical reasons, a distribution function p of the mesoscopic 
states of all particle positions { 𝑸 𝑖 } 𝑖 =1 , …,𝑁 and shape tensors { 𝑻 𝑖 } 𝑖 =1 , …,𝑁 

is used a dynamic variable for the mesoscopic level of description. To 
account for inhomogeneous situations, the distribution function is made 
dependent on the macroscopic position, leading to 𝑝 = 𝑝 ( 𝒓 , { 𝑸 𝑖 } , { 𝑻 𝑖 }) , 
where {…} denotes the collection of variables for all particles, i.e. 
including all terms from 𝑖 = 1 until 𝑖 = 𝑁 . Averages over mesoscopic 
states, denoted by ⟨ · ⟩, can be conveniently described in terms of p as 

⟨ℎ ⟩( 𝒓 ) = 𝑛 ( 𝒓 ) −1 ∫ ℎ 
(
𝒓 , 
{
𝑸 𝑖 

}
, 
{
𝑻 𝑖 

})
𝑝 
(
𝒓 , 
{
𝑸 𝑖 

}
, 
{
𝑻 𝑖 

})
𝑑 𝑸 𝑑 𝑻 , (3) 
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