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A B S T R A C T

A new Bingham-Darcy shallow depth approximation flow model is proposed in this paper. This model is suitable
for a shallow viscoplastic fluid flowing on a general topography and crossing an array of vertical obstacles. An
analogous porous medium is first introduced to reduce the array of obstacles. The reduction model is based on a
continuum model similar to the Brinkman equations, where the usual Darcy model is extended for viscoplastic
Bingham fluids. A specific asymptotic analysis of this Bingham-Darcy porous medium for the case of shallow
depth flows allows us to produce a new reduced model. Some assumptions are needed for the reduction: laminar
flow, small degrees of slope variation of the underlying topography and a yield stress that is small when com-
pared with gravity effects. The resulting solution is a highly nonlinear parabolic equation in terms of the flow
height only, and is efficiently solved by a Newton method, without any regularization. However, our numerical
predictions compares well, both qualitatively and quantitatively with both experimental measurements and full
tridimensional simulations. Finally, a new experiment for a viscoplastic flow over an inclined plane through a
network of obstacles is proposed and numerical simulations are provided for future comparison with experi-
ments.

1. Introduction

The problem of complex fluids flowing through networks of discrete
obstacles applies to many applications in natural and material sciences.
During natural risk assessments, for example, volcanic debris and/or
lava flows may move through dense forests, as was the case for lavas
advancing during Kilauea’s July 1974 eruption [1] and Etna’s 2002-03
eruption [2], among others. To date, lava flow emplacement models
have tended to consider tree-free surfaces in completing their simula-
tions (e.g., [3–5]). The same applies to non-volcanic debris flows in
forested mountainous or urban areas (see e.g. [6,7]). In terms of ma-
terial sciences, flow of a viscoplastic fluid through arrays of solid cy-
linders needs to be considered in industrial processes, such as in the
case of fresh concrete spreading through networks of steel bars (see
e.g. [8,9]).

Taking into account each obstacle in numerical simulations leads to
very time consuming computations. The usual approach is to replace
the discrete configuration of obstacles with an equivalent continuous
medium, the so-called fibrous porous medium. In the case of a
Newtonian fluid, this continuous medium is described by the classic
Darcy model [10]. This model proposes a linear relation between the

flow rate and the pressure drop occurring across the porous medium.
In 1949, Brinkman [11] proposed a modification of the classic Darcy
model by combining the Navier–Stokes equations with the Darcy
model. This combination is useful for situations where there are both
flow sub-regions with and without porous media. While the Brinkman
model provides a global description of both these sub-regions, the
Darcy model alone is unable to describe regions without porous media.
Conversely, in the case of a non-Newtonian fluid, the situation is rather
complex. This is due to , from one hand, the complexity of the fluid
behavior and, on the other hand, the porous micro-structure. Bourgeat
and Mikelić [12] proposed a first theoretical analysis of quasi-New-
tonian shear-thinning and shear-thickening fluids, and derived a mod-
ified-Darcy model. This modified-Darcy model involves an effective
viscosity (ηeff), which depends both upon the flow rate and the micro-
structural characteristics of the porous medium, these being described
by the permeability tensor (κ) and porosity (ϕ). The porosity is defined
as the volume fraction of fluid in the mixture represented by fluid as
opposed to the obstacles: it is equal to one for a medium without ob-
stacles and tends to zero as the obstacle density increases. Permeability
depends both upon ϕ and the geometric configuration of the obstacles,
where some explicit expressions of κ vs ϕ exist, and these depend on a
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geometrical hypothesis based upon the obstacle distribution. For Non-
Newtonian viscoplastic fluids, a yield stress has to be reached to achieve
a transition between the unyielded, arrested state of the fluid and the
yielding state (see e.g. [13,14]). Thus, there fluids which do not obey to
the usual linear Darcy model with their rheological response to an
applied stress, as there is also some no-flow situations in poros-
ities [15,16]. Based on an experimental investigation, Pascal [17]
proposed – for an Herschel–Bulkley viscoplastic fluid – a modified-
Darcy model that uses a threshold gradient. Some papers have since
focused on flow through packed beds of spherical particles. Al-Fariss
and Pinder [18], for example extended the Pascal [17] model by de-
riving an equation for the threshold gradient to describe the flow of
waxy oil through beds of packed spheres. Chevalier et al. [19], based on
experimental measurements for a fluid with a yield stress passing
through packed glass beads, proposed an empirical relationship be-
tween the pressure drop and the flow rate. Recent studies have con-
sidered complex fluid flow through fibrous porous media. Bleyer and
Coussot [20], for example performed two-dimensional numerical si-
mulations of a viscoplastic flow through an ordered array of disks;
Shahsavari and McKinley [21] investigated the flow of Herschel–-
Bulkley fluids through fibrous media by means of numerical studies and
scaling analyse. As a result, Shahsavari and McKinley [21] developed
an effective viscosity function which can be used in the modified-Darcy
model for steady fully-developed viscoplastic flows. In addition, Vasilic
et al. [8] defined the apparent shear rate using a shift factor and a
generalized Brinkman equation. They also performed numerical simu-
lations using a bi-viscosity regularized viscoplastic model and com-
pared their results with experimental measurements on a Carbopol gel
flow which was slowly poured into a transparent container where an
array of cylindrical steel were located across the middle zone of simu-
lation. Comparing simulations and experimental observations, they
obtained both qualitative and quantitative agreements for the final
shape of the flow.

For thin flows, the usual approach is to consider shallow-depth
approximations. The shallow-flow approximations of laminar visco-
plastic Bingham fluids were first studied by Liu and Mei [22], based on
a rigorous asymptotic analysis. This approach was revisited by Balm-
forth and Craster [23] and extended to the axisymmetric case [24], for
an application to volcanic lava domes. For fast flows, such as debris and
mud flows on mountain slopes, Laigle and Coussot [25] derived the first
reduced model that combines both inertial and viscoplastic effects,
where viscoplastic effects are estimated from the friction at the flow
base. Assuming a compressible material, Bresch et al. [26] derived a
reduced viscoplastic model that also included inertial effects. This ap-
proach was next revisited in the incompressible case in terms of
asymptotic analysis by Fernández-Nieto et al. [27] and by Ionescu [28]
who both applied an augmented Lagrangian algorithm. Practical pre-
dictions of natural hazard need to take into account general tridimen-
sional and complex topographies (see e.g. [29]). A new approach for
topography in shallow flow models was proposed by Bouchut et al. [30]
which relaxes most restrictions, such as slowly varying topographies.
Next, Ionescu [31], considered Bingham and Drucker–Prager models
and extended this approach with an elegant formulation based on
surface differential operators (surface gradient and divergence) while
also including inertia effects. For a more exhaustive review of various
shallow flow approximations of viscoplastic fluids, see the recent re-
view paper of Saramito and Wachs [13].

The model proposed here allows a shallow-flow approximation of
both the Bingham-Brinkman model, and involved application a mod-
ified-Darcy model for viscoplastic fluids. This model is of practical
application for risk assessment, by opening the possibility of numeri-
cally investigating the effects of forests on the spatial and temporal of
volcanic flow propagation, which has an unknown effect on flow ad-
vance (see [32]). Our model could be also useful for industrial pro-
cesses, such as fresh concrete spreading through arrays of steel bars, as
the required computing time is dramatically decreased over fully three-

dimensional models. Instead of time-dependent tridimensional simula-
tions with moving free-surfaces, the model presented here requires only
the solution of a simple two-dimensional parabolic equation for flow
height. The array of obstacles is first reduced to a continuum model by a
generalized tensor Brinkman equations for yield strength fluids. Then,
by assuming a shallow laminar flow, a low slope variation in the to-
pography and a yield stress that is assumed to be small when compared
to the gravity effects, we extend a previous asymptotic analysis [29] to
the Brinkman equations extended for the Bingham model.

The outline of this paper is, thus, as follows. Section 2 proposes a
new shallow-depth approximation of the viscoplastic Bingham model
for a fluid flowing on a general topography and crossing an array of
vertical obstacles. Section 3 proposes a Newton’s algorithm for efficient
solution of an unregularized nonlinear Bingham-Brinkman (reduced)
model. Comparisons between numerical simulations and experimental
observations are presented and discussed in Section 4. Finally, the flow
of viscoplastic fluids on an inclined plane through different fibrous
mediums is numerically investigated, our aim being to understand and
quantify the influence of the obstacles on the flow propagation. This
numerical experiment could be reproduced with real fluids for future
comparisons and benchmarking. The impatient reader, who is not in-
terested in the asymptotic analysis, can read paragraph 2.1 for the in-
itial problem, then paragraph 2.5 for the final reduced problem and,
finally, jump straight to Section 4 for a review of our results and a
discussion.

2. Bingham-Darcy shallow depth approximation

2.1. The initial tridimensional problem

We consider the Bingham model [33] constitutive equation which
expresses the deviatoric part τ of the stress tensor versus the rate of
deformation tensor γ̇ as:
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where η>0 is the plastic viscosity and τy≥ 0 is the yield stress. Here
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denotes the conventional norm of a symmetric

tensor in mechanics. The total Cauchy stress tensor is = − +σ τp I.
where p is the pressure and I the identity tensor. We assume that the
array of obstacles can be treated as an equivalent continuum porous
medium. The constitutive Eq. (1) is then completed by the conserva-
tions of momentum and mass:

∂ + ∇ − + ∇ = +τρ ρu u u div p f g( ( . ) ) ( ) ,t p (2)

=udiv 0, (3)

where ρ>0 is the constant density, g is the gravity vector and fp a
source term based on local generalized Darcy’s law (e.g. see [34]) re-
lating the force exerted on the pore fluid (typically gradient pressure
and gravity force) to the macroscopic-scale velocity by:

= − −κηf u,p
1

eff (4)

where ≥η 0eff is the material local apparent viscosity and κ the per-
meability tensor. The conservation equations with the addition of a
Darcy source term in the momentum equation is called the Brinkman
equations [11]. This model allows us to deal with mixed cases where
only a part of the calculation domain is taken up by a fibrous porous
medium. In this case, out side of the porous zone, the permeability is
infinite and the source term fp vanishes to give the standard con-
servation equations.

It was proved in [35,36] that the permeability tensor is symmetric
and positive definite. This means that the permeability tensor has three
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