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A B S T R A C T

Mechanical molecular scission is the main problem of polymeric drag reducers. The ability to reduce the drag is
notably decreased as the molecules break down step by step as time goes on. A number of researchers have given
a large part of their time to attempts to further understand the role that some important features play in polymer
degradation. Until now, all efforts have been in experimental approaches. This paper is the first attempt to take
into account the effect of molecular scission on a drag reducing flow by a direct numerical simulation. We
analyse a turbulent plane Couette flow of a FENE-P fluid. Our degradation model is based on the maximum
polymer extension length L. Unlike the standard FENE-P model, in which L is a constant, the polymer extension
here is a spatio-temporal field L(x, y, z, t). When the molecules are highly stretched, which is measured by the
trace of the conformation tensor, their maximum length is locally reduced and, consequently, so is their ability to
reduce drag. The degraded L spreads within the domain by means of a transport equation. We show here that
with such a simple idea we are able to predict the main aspects of mechanical degradation in the flow, such as
the change of the turbulent structures and velocity field, and, consequently, the fall of the drag reduction over
time.

1. Introduction

Drag reducing polymers have been studied for over 70 years. The
number of their practical uses is enormous, including the transport of
liquid in pipelines, firefighting operations, and medical applications.
The main aspects of the phenomenon, as the role played by the polymer
concentration, molecular weight, temperature, Reynolds number, and
the quality of the solvent, have been much analysed (see [12,26]).
Researchers have also devoted a lot of time to attempts to describe the
mechanism of drag reduction (DR). The two main ideas were first
proposed by Lumley [11] (the viscous theory) and Tabor and de Gennes
[22] (the elastic theory). Recently, some authors have used both the
viscous and elastic concepts in an effort to describe in detail the me-
chanism of DR based on a coil–stretch cycle of the polymer near the
wall (see [6,7,9,15,17–19]). However, many aspects of the problem are
still under investigation, such as the role played by mechanical de-
gradation in such a coil–stretch cycle. Perhaps a new mechanism should
consider a cycle consisting of a coil–stretch followed by a scission, i.e. a
coil–stretch–scission cycle.

The focus here is the polymer degradation. It is the consensus that

the mechanical molecular scission is the main problem in the attempt to
conceive a highly efficient drag reducer. Such a problem has received
deserved attention over the years and many authors have contributed to
interpreting the role played by the many features of the problem in the
polymer degradation in turbulent flows. The role played by the con-
centration, molecular weight, temperature, Reynolds number, and
quality of the solvent in the resistance of the solution can be found in
[1,14,16,20,21], who conducted a detailed analysis of degradation
using different water soluble materials (PEO, PAM and XG) and showed
that the shear resistance increases with the concentration and mole-
cular weight. It is worth noting that the molecules break step by step in
a drag reducing flow, but this process stops after a long enough time,
when the polymer mean molecular weight reaches an asymptotic value.
Hence, it is also to be expected that there will be a certain steady state
of a DR larger than zero, [10,16,21,25]. Obviously, here we are not
considering biological degradation, which can take the DR to zero, see
[4].

As far as we know, our paper is the first attempt to provide a
computer model of mechanical molecular scission in drag reducing
flows. In fact, there have been a number of important numerical
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investigations of DR. Most of them use direct numerical simulations of
the standard FENE-P model (see [7,8,15,23]), in which the maximum
molecular length L is a constant. Unlike the approaches commonly
used, we consider L as a spatio–temporal field, namely, L(x, y, z, t).
Conceptually, from the FENE-P model, L can be clearly related to the
mean polymer molecular weight. In fact, we use a criterion based on the
polymer stretching, computed by the trace of the conformation tensor,
to change the values of L point by point. The degraded L is spread
within the domain by means of a transport equation. By doing so, the
domain has at each point in time a distribution of L, which resembles a
distribution of molecular weights from an experimental point of view.

This paper is organized into 5 sections. In Section 2 we present the
physical formulation, which is divided into two parts: A) The main
governing equations and B) the mechanical degradation model. The
numerical method is briefly presented in Section 3. Our results are in
Section 4 and, finally, the concluding remarks are in Section 5.

2. Physical formulation

We detach this section into two parts. At first, in Section 2.1, we
show the standard equations for the flow a FENE-P fluid in parallel
plates. In the second part, in Section 2.2, we give the details of our
mechanical degradation model.

2.1. The main governing equations

Following our previous paper [15], we consider a turbulent plane
Couette flow of an incompressible dilute polymer solution. The flow is
driven by both the top and the bottom plates, which have the same
magnitude of the velocity in the streamwise direction (Uh), but opposite
senses. The streamwise direction is =x x,1 the spanwise direction is

=x y,2 and the wall-normal direction is =x z3 . The instantaneous ve-
locity field is =u u u u v w( , , ) ( , , )x y z and is solenoidal (∇ =u· 0, where u
denotes the velocity vector). Wall scaling is used and is based on zero-
shear rate variables with the length and time scaled by νtot/uτ and
ν u/ ,tot τ

2 where = +ν ν νtot N p0 is the total (solvent + polymer) zero-shear
viscosity, and uτ is the zero-shear friction velocity. Using this scaling,
the dimensionless momentum equations are
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In Eq. (1), the superscript ‘+’ indicates the wall unit normalization, +p
is the pressure, and β0 is the ratio of the Newtonian solvent viscosity
(νN) to the total zero-shear viscosity (νtot). The extra-stress tensor
components are denoted by +Ξij . The formalism of Eq. (1) includes the
assumption of a uniform polymer concentration in the dilute regime
which is governed by the viscosity ratio β0, where =β 10 yields the
limiting behaviour of the Newtonian case. The extra-stress tensor
components ( +Ξij ) in Eq. (1) represent the polymer’s contribution to the
tension of the solution. This contribution is accounted for by a single
spring–dumbbell model. We employ here the FENE-P kinetic theory [3].
This model employs the phase-averaged conformation tensor

=C q q ,ij i j where the qi are the components of the end-to-end vector of
each individual polymer molecule. The components of the extra-stress
tensor, +Ξ , are then = −+ Cα f tr C δΞ ( { ( )} )ij ij ij0 with = −α β Wi(1 )/ ,τ0 0 0

where =Wi λu ν/τ τ tot0
2 is the friction Weissenberg number representing

the ratio of the elastic relaxation time (λ) to the viscous timescale.
Additionally, δij is Kronecker’s delta and f{tr(C)} is given by the Peterlin
approximation = −

−
Cf tr{ ( )} ,
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2 where L is the maximum polymer

molecule extensibility and {tr(.)} represents the trace operator. This
system of equations is closed with an evolution equation for the con-
formation tensor
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where = ∂ ∂ + ∂ ∂+ + + + +S u x u x( / / )/2ij i j j i and = ∂ ∂ − ∂ ∂+ + + + +W u x u x( / / )/2ij i j j i
are, respectively, the terms of the rate-of-strain, +S , and the rate-of-
rotation, +W , tensors.

2.2. The mechanical degradation model

Our effort here is to build a very simple model as a first attempt to
take into account the effects of the mechanical polymer degradation in
drag reducing flows based on a FENE-P fluid. We deliberately modify
the standard approach widely used to simulate drag reducing flows to
the smallest extent possible, minimizing numerical instabilities and
costs, but creating the means to further understand the polymeric DR,
considering the very important mechanism of mechanical degradation.
Specifically, our degradation model is focused on the maximum mole-
cule extensibility L, which seems to be the most evident parameter that
can be changed when degradation play a role. Obviously, when a mo-
lecule breaks into two pieces, the maximum length reached by each
part is reduced. Hence, that is exactly what we consider here. Unlike the
standard FENE-P model, here L is spatio–temporal field, which spreads
within the domain by a transport equation. We are certainly conscious
of the extra implications of molecule degradation for the FENE-P fluid.
We mean that a more sophisticated degradation model based on the
FENE-P fluid should, perhaps, also consider a spatio–temporal field of
viscosity and Weissenberg number, but these modifications all together
would impose a lot of numerical instabilities.

As mentioned above, we consider a spatio–temporal field of the
maximum polymer extension length, L(x, y, z, t), instead of the unique
and constant L typically used in the standard FENE-P model. Thus, L is a
molecular property that must be transported, as occurs in a real flow. In
order to spread the degraded molecules within the domain, we use a
transport equation for L(x, y, z, t),
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Here, L is the local and instantaneous maximum polymer extension
length and +u ,x

+u ,y and +uz dictate the corresponding local velocity
components in the streamwise ( +x ), spanwise ( +y ) and wall-normal ( +z )
directions. The explicit dissipative elliptic term in Eq. (3) is an artifice
used to remove the unphysical high wave-number instabilities typically
induced by the chaotic nature of viscoelastic turbulent flows, when
computed with high-order spectral code. Hence, kL represents a con-
stant of artificial diffusivity. Here, this constant is quite small,

= −k 10 ,L
6 and, as a result, the transport of L is dominated by advection.

At last, in order to keep the physical consistency, the maximum
polymer extension length equation (Eq. (3)) was solved following ex-
actly the same method employed for the conformation tensor equation
(Eq. (2)). More specifically, the maximum polymer extension length
equation without artificial diffusivity was at first updated on the
channel walls. These intermediate values were then used as boundary
conditions to step forward the maximum extension length equation
including artificial diffusivity (Eq. (3)). This temporal scheme proved to
be stable, as explained in details by Thais et al. [24], and guarantees the
positive-definiteness of L(x, y, z, t).

At the beginning of the simulation, L(x, y, z, t) is uniform and equal
to an initial value ( =L 30i in the simulations presented here). As the
simulation progresses, we use a mechanical scission criterion to eval-
uate the new values of L(x, y, z, t) within the domain. The criterion is
based on the relative polymer stretching, which is taken into account by
the ratio between the trace of the conformation tensor and L ,i

2 i.e.
Ctr x y z t L( ( , , , )/ )i

2 .
More precisely, at particular time-steps during the simulation, if

≥Ctr x y z t L ζ( ( , , , )/ ) ,i
2 then L(x, y, z, t) is reduced by a previously

determined amount. Since L(x, y, z, t) is used to calculate a local
Peterlin function at each time-step (which is related to the polymer
forces), a decreasing L(x, y, z, t) reduces the polymer’s contribution in

A.S. Pereira et al. Journal of Non-Newtonian Fluid Mechanics 256 (2018) 1–7

2



Download English Version:

https://daneshyari.com/en/article/7061077

Download Persian Version:

https://daneshyari.com/article/7061077

Daneshyari.com

https://daneshyari.com/en/article/7061077
https://daneshyari.com/article/7061077
https://daneshyari.com

