
Contents lists available at ScienceDirect

Journal of Non-Newtonian Fluid Mechanics

journal homepage: www.elsevier.com/locate/jnnfm

Fluctuating viscoelasticity

Markus Hütter⁎, Martien A. Hulsen, Patrick D. Anderson
Polymer Technology, Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

A R T I C L E I N F O

Keywords:
Fluctuations
Viscoelasticity
Conformation tensor
Multiplicative decomposition
Complex fluids

A B S T R A C T

The smaller the scales on which complex fluids are studied, the more fluctuations become relevant, e.g. in
microrheology and nanofluidics. In this paper, a general approach is presented for including fluctuations in
conformation-tensor based models for viscoelasticity, in accordance with the fluctuation-dissipation theorem. It
is advocated to do this not for the conformation tensor itself, but rather for its so-called contravariant decom-
position, in order to circumvent two major numerical complications. These are potential violation of the positive
semi-definiteness of the conformation tensor, and numerical instabilities that occur even in the absence of
fluctuations. Using the general procedure, fluctuating versions are derived for the upper-convected Maxwell
model, the FENE-P model, and the Giesekus model. Finally, it is shown that the fluctuating viscoelasticity
proposed here naturally reduces to the fluctuating Newtonian fluid dynamics of Landau and Lifshitz [L. D.
Landau and E. M. Lifshitz, Fluid Mechanics, Vol. 6 of Course of Theoretical Physics, Pergamon Press, Oxford,
1959], in the limit of vanishingly small relaxation time.

1. Introduction

The focus of this paper is on modeling the rheological behavior of
complex, primarily polymeric, fluids on small scales. What is meant by
small scales must be specified in relation to a typical length-scale or
volume in polymers. For example, in melts of entangled polymer
chains, a volume of relevance for the mechanical behavior is related to
the plateau modulus GN

0 . Particularly, the ratio of the thermal energy
kBT to GN

0 gives an approximation of the volume occupied by an en-
tanglement strand, which for typical polymer melts is between 2 nm3

and 40 nm3 [1,2]. Upon dilution, the characteristic volume can increase
by several orders of magnitude. For entangled solutions, the char-
acteristic volume depends on the volume fraction ϕ of polymer through
an inverse power-law relation, −ϕ β with β≥ 1 [3]. In general, it is to be
expected that fluctuations become relevant if these complex fluids are
confined on scales comparable to the above characteristic volumes, or
the corresponding length scales, respectively.

A prominent example, where fluctuations are relevant due to the
smallness of the involved length scales, is microrheology [4–6]. The
fluctuating motion of a small tracer particle immersed in a fluid origi-
nates from the fluctuations in the surrounding fluid. Since the fluid
fluctuations on the particle surface average out as the particle size in-
creases, it is crucial for microrheology that the tracer particle is suffi-
ciently small, in order to pick up the fluctuations of the fluid. For a
Newtonian fluid, the Sutherland-Einstein-Smoluchowski relation links
the diffusive behavior of the small tracer particle with the fluid

viscosity [7–9], which in turn is a measure for the fluctuating stress in
the fluid. To derive such a relation, one can use a continuum for-
mulation of Newtonian fluid dynamics with fluctuations, according to
the approach of Landau and Lifshitz [10], and study its effect on an
immersed particle [11,12]. The question arises how the dynamics of a
tracer particle can be used to assess the rheology of the suspending fluid
if the fluid is non-Newtonian, i.e., viscoelastic. This issue has been
addressed by Mason and Weitz [4], based on a Langevin equation for
the tracer particle [13,14] that is generalized by including a memory
kernel, i.e. colored noise [15–18], which leads to a generalization of the
Sutherland–Einstein–Smoluchowski relation. In order to arrive at such a
relation not by postulating a certain particle dynamics, but rather by
including fluctuations in the surrounding fluid, a theory of fluctuating
viscoelasticity is needed. In [19,20], this has been done by relating the
rate-of-strain tensor to the stress tensor through a memory kernel and
by introducing colored noise on the stress tensor. However, it can be
desirable to adopt an approach that, first, avoids the use of memory
kernels, and second, that can more easily be extended to truly non-
linear flows. While the latter is believed to be irrelevant for passive
microrheology, it is likely of importance for active microrheology,
where the particle is forced through the fluid by external influences. An
approach that is devoid of memory kernels and coloured noise for de-
scribing fluctuating viscoelasticity has been proposed [21] and applied
to microrheology [22]. This approach is based on smoothed-particle
hydrodynamics, i.e., on discrete interacting particles mimicking the
fluid behavior, which can be regarded as a discretized numerical
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approximation to a continuum model.
In addition to microrheology, it is desirable to have a theory of

fluctuating viscoelasticity at hand also in the context of microfluidics
and particularly nanofluidics [23,24], where the fluid is confined to
structures with characteristic dimensions of order micrometer or as
small as a few nanometers.

The literature on modeling fluctuating viscoelasticity, on a level
coarser than that of discrete microscopic particles, is scarce. For ex-
ample, Langevin equations for concentration and stress variables with
memory have been formulated for a collection of non-interacting Rouse
polymers [25]. Furthermore, the Newtonian fluid model has been ex-
tended in order to capture elastic effects that are said to emerge on
nanometer scales [26,27]. Memory-effects have been introduced in the
relation between the stress and the rate-of-strain [19,20]. And a quite
elaborate approach is the one in [21], where a smoothed-particle hy-
drodynamic model for viscoelastic fluids is developed. However, to the
best of the authors’ knowledge, there is no general procedure in the
literature for including fluctuations in a non-linear and non-isothermal
viscoelastic model on the continuum level.

In this paper, the formulation of fluctuating viscoelasticity is based
on rheological models that make use of microstructural dynamic vari-
ables [28], specifically conformation tensors, e.g. the upper-convected
Maxwell model [29,30], the FENE-P model [30,31], and the Giesekus
model [30,32,33]. Using conformation-tensor based models, not only
the memory kernel in the relation between stress and strain-rate is
obsolete. There is also a variety of different models and substantial
expertise in the literature about how to incorporate non-linearities
depending on the material at hand, based on physical insight on the
microstructural level. In order to incorporate fluctuations in this class of
rheological models, this paper will use a nonequilibrium-thermo-
dynamics formulation of the deterministic models [34,35], which is
then extended by adding fluctuations in agreement with the fluctua-
tion-dissipation theorem [36–38], according to [35,39,40].

The paper is organized as follows. After outlining the thermo-
dynamic procedure in Section 2, the general form of a dynamic model
for the conformation tensor c is formulated including fluctuations in
Section 3. Motivated by numerical intricacies of that latter setting, in
Section 4 fluctuating viscoelasticity is developed for a multiplicative
decomposition of the conformation tensor, namely for the quantity b in

=c b b· ,T and the relation between the b- and c-formulations is estab-
lished. Both b- and c-formulations of some specific well-known models
are then discussed in Section 5. In Section 6, it is demonstrated that in
the limit of a vanishingly small relaxation time, the developed approach
reduces to the case of fluctuating Newtonian fluid dynamics studied by
Landau and Lifshitz [10]. The paper is concluded with a summary and
discussion, Section 7.

2. Thermodynamic procedure

2.1. Taking fluctuations into account

For formulating dynamic models, nonequilibrium thermodynamics
is used as a guideline, in order to comply with fundamental thermo-
dynamic principles. Particularly, fluctuations have to be included in a
dynamic model in a thermodynamically consistent manner, i.e., the
fluctuation-dissipation theorem [36–38] needs to be respected. While
various nonequilibrium thermodynamic procedures have been devel-
oped, the General Equation for the Non-Equilibrium Reversible-Irre-
versible Coupling (GENERIC) framework [35,39,41] is going to be used
in this paper. The main reason for this choice is that this framework,
being derived by way of systematic coarse-graining [35,40], offers the
concrete tools for adding fluctuations to an otherwise deterministic
model.

In the following, the main aspects of the GENERIC with fluctuations
are highlighted; the reader is referred to [35,39,40] for further detail.
Let us consider the (non-redundant) set of variables x that describes the

system of interest to the desired detail. According to [35,39,40], the
corresponding evolution equations can be written in the following
form, in the absence of fluctuations,

= +δE
δ

δS
δ

˙ · · ,x L
x

M
x (1)

with energy E, entropy S, Poisson operator ,L and friction operator M.
The first term on the right-hand side (r.h.s.) of (1) is called reversible,
while the second term is irreversible in nature. In the case that fluc-
tuations of the variables x are included in the dynamic model, the
Fokker–Planck equation for the (transition) probability p of x is given
by [35,39,40],
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with Boltzmann constant kB, and time t. Equivalently, this dynamics can
be expressed in terms of the corresponding stochastic differential
equation, using the Itô interpretation of stochastic calculus [42,43],

= + + +d δE
δ

dt δS
δ

dt k δ
δ

dt d· · · · ,Bx L
x

M
x x

M B W (3)

where dW stands for multicomponent white noise, more precisely, for
the increment of a multicomponent Wiener process [42,43]. The fluc-
tuating contribution in (3) is related to the irreversible dynamics by
way of

= k· 2 ,T
BB B M (4)

thereby respecting the fluctuation-dissipation theorem. It is noted that
the fluctuations in (2) and (3) can be eliminated by letting the Boltz-
mann constant kB go to zero, while leaving the building blocks E, S, ,L
and M unchanged.

2.2. Comment about local-field theories

There are some intricacies related to applying the above procedure
with fluctuations to field theories. In general, stochastic partial differ-
ential equations are a difficult topic. In the following, some issues of
relevance for this paper are discussed briefly. For a more general per-
spective on the subtleties of stochastic partial differential equations, the
reader is referred to [44–46].

For simplicity, consider a local-field theory, by which we mean the
following two properties: First, the operators L and M are not general-
ized functions depending on two positions r and r′, but rather they are
local operators depending on a single position only (see [35] for details
on this difference). And second, the functionals E and S are volume
integrals of the corresponding densities (e and s), which in turn depend
locally on the fields of interest ,x i.e. ∫=E e d r[ ] ( ) 3x x and

∫=S s d r[ ] ( ) ,3x x respectively. In this setting, the functional derivatives
of E and S are equal to the corresponding partial derivatives of the
respective density. For the terms on the r.h.s. of (2), this implies that
δS δ p( / )x has the physical units of − −S V x p[ ][ ] [ ] [ ],1 1 which must there-
fore also hold for k δp δ( / )B x . The units of that latter term can be ratio-
nalized as follows. Consider a quantity a that is a local function of the
fields x. For this case, one can show that the functional derivative of the
function a is proportional to the Dirac δ-function,

= − ′ ∂
∂

′ r rδ
δ

a δ a( ) ( ) ( ) .
r

r
r

r
i i, ,x

x
x

x
(5)

Throughout the entire paper, the dependence of fields on position r and
time t is omitted whenever all quantities in a relation are evaluated at
the same position and time. Only if different positions and/or times are
involved in a relation, as is the case in (5), the respective arguments are
given explicitly, by subscripts. To proceed, we interpret the Dirac
function as follows. In addition to the function being zero for r≠ r′, the
height of the function at = ′r r is given by the inverse of the size of the
volume element ≡ d r,3V due to the normalization condition for the
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