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A B S T R A C T

An original study of nanofluid viscosity is proposed. The carrier fluid is assumed Newtonian but the two-phase
nanofluid displays properties abiding by a generalized Maxwell constitutive law. Our approach is based on an
extension of Einstein's model describing suspensions of solid particles in fluids by the introduction of the fol-
lowing elements: presence of a layer around the nanoparticles and a thermodynamic description of the role of
size effects. The theoretical formalism is applied to liquid argon with lithium nanoparticles and to alumina
nanoparticles in water. Good agreement with experimental data and molecular dynamics simulation is observed.

1. Introduction

Nanofluids are binary mixtures consisting of nanoparticles dispersed
in a host fluid. These systems have met an increasing interest in several
industrial applications, like in biotechnology, nanotechnology, elec-
tromechanical systems, they have proved to be relevant in the devel-
opments of new drugs, paints, lubricants among others. It is well know
that the presence of nanoparticles influences considerably the thermo-
mechanical properties of the basic fluid like, in particular, thermal
conductivity and viscosity.

In this paper, focus is put on the role of nanoparticles on the shear
viscosity of the system, an impressive lot of works (e.g. [1–10]) have
been published on the subject. Viscosity depends essentially on the
temperature, the nature of the particles and the fluid, the volume
fraction of particles and their size. Subsequently, the analysis is focused
on the role of volume fraction and particles size, the temperature is
assumed uniform.

It has been observed that the viscosity of nanofluids is much lager
that that of the host fluid. Several theoretical and ad hoc expressions for
the viscosity η in terms of the particle's volume fractions φ have been
proposed, among which the celebrated Einstein formula [11]

= +η η φ(1 2.5 ),f (1)

with ηf denoting the viscosity of the host fluid, this expression is valid
for dilute mixtures

(φ<0.05) with spherical particles. Other more sophisticated ad-
hoc relations have been formulated like a quadratic dependence in the
viscosity [12]

= + +η η a φ a φ(1 ),f 1 2
2

(2)

wherein a1 and a2 are parameters taking different values according to
the nature of the nanofluid. Other models like those of Chen et al. [5]
and Mahbubul et al. [8] have also been exploited.

The dependence of viscosity on the size of nanoparticles has been a
subject of debate. For some authors [13,14], viscosity increases with
increasing dimensions of nanoparticles while others [15–17] assert that
viscosity diminishes with increasing size. For sufficiently large parti-
cles, the dependence with respect to size becomes negligible. It is
however worth to mention that no valuable theoretical considerations,
outside molecular dynamic simulations [18] are able to explain such
behaviors.

The gap will be filled in the forthcoming: a formalism based on
Extended Irreversible Thermodynamics (EIT) [19–21] is presented
wherein the nanofluid is viewed as a generalized Maxwell model. In
addition, our analysis will emphasize the role of interfacial layers sur-
rounding the solid particle, acting as a possible mechanism for mo-
mentum transfer. This concept was introduced by Choi [22] and
exploited by Yu and Choi [23] and Xie et al. [24] to interpret the en-
hancement of thermal conductivity in nanofluids.

The working hypotheses of our model are the following:

• the dispersed particles are solid spheres of radius r,

• the host fluid is homogeneous, incompressible, isotropic and
Newtonian,

• the particles are homogeneously distributed in the fluid,

• no formation of aggregates,

• the effects of the Brownian motion of nanoparticles is neglected,
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• thermal effects are not taken into account and temperature is uni-
form.

The paper is organized as follows. In Section 2, the main ingredients
underlying EIT are recalled and the evolution equations governing the
behavior of the state equations, essentially the internal energy and the
viscous pressure tensor, are formulated. In Section 3, an expression of
the effective shear viscosity of nanofluids in presence of spherical rigid
nanoparticles is derived. In Section 4, the model is applied to lithium
particles dispersed in Argon and to aluminate particles in water, re-
spectively. Conclusions are drawn in Section 5.

2. Extended Irreversible Thermodynamics

The description of systems at subscales, such as nanoparticles, re-
quires to go beyond the classical theory of irreversible processes [25]. A
good candidate for treating these classes of problems is Extended Irre-
versible Thermodynamics (EIT). The principal idea behind EIT is to
elevate the fluxes, as the fluxes of mass, energy and momentum to the
status of independent variables at the same level as the classical con-
served variables like mass, energy or momentum.

As a case-study, let us consider the flow of a viscous incompressible
fluid at uniform temperature. The generalization to more complicated
systems as fluids mixtures [26], polymer solutions [27], suspensions
[28], porous media [29] and others have been dealt with in detail in
numerous publications and books. In the case of an incompressible fluid
flow, the only relevant conserved variable is the specific internal energy
e (per unit mass)) whereas the flux variable is the viscous pressure
tensor P, it is a second order symmetric traceless tensor, in contrast
with e, it is not a conserved quantity. The corner stone of EIT is to
assume the existence of a specific non-equilibrium entropy function s
depending on both e and P so that s= s(e, P) or, in terms of time de-
rivatives,

=
∂

∂
+

∂

∂
⊗

P
Pd s s

e
d e s d ,t t t (3)

wherein ⊗ stands for the inner product of the corresponding tensors,
the symbol dt designates the time derivative which is indifferently the
material or the partial time derivative as the system is, respectively, in
motion or at rest. It is assumed that s is a concave function of the
variables and that it obeys a general time-evolution equation which can
be written in the form

= + ∇ ≥Jσ ρd s . 0,s
t

s (4)

with σs its rate of production per unit volume (in short, the entropy
production) to be positive definite in order to satisfy the second prin-
ciple of thermodynamics, ρ is the mass density of the nanofluid and the
vector Js is the entropy flux, the dot between∇and Js denotes the scalar
product. Let us define the temperature by T −1= ∂s /∂e assumed to be
independent of the dissipative flux P, next, we select the constitutive
equation for ∂η/∂P as assumed to be given by the linear relation ∂s/
∂P= -(γ1/ρ) P, where γ1 is a material coefficient depending generally
on ρ and T, γ is positive definite in order to meet the property that s is
maximum at local equilibrium, the minus sign in front of γ(T)P has
been introduced for convenience. Under these conditions, expression
(3), can be written as

= − ⊗ − ⊗− P D P Pρd s T γ dt t
1

1 (5)

after use has been made of the energy conservation law

= − ⊗P Dρd e ,t (6)

wherein D is the symmetric traceless velocity gradient tensor. In ab-
sence of heat flux, the entropy flux is zero and the entropy production
takes the form

= − ⊗ + ≥−P D Pσ T γ d( ) 0.s
t

1
1 (7)

It is a bilinear relation in the flux P and the quantity represented by
the two terms between the parentheses that is usually called the ther-
modynamic force X. The simplest way to guarantee the positiveness of
the entropy production σs is to assume a linear flux-force relation of the
form X= -μ1 P with μ1 a positive phenomenological coefficient, this
procedure leads to the well-known Maxwell model

= − −P P Dτ d η2 ,t1 (8)

after one has put γ1/ μ1= τ1 (relaxation time) and 1/Tμ1= 2η (shear
viscosity) and wherein τ1 and η are positive quantities as μ1 and γ1 have
been proven to be positive coefficients. Letting τ1 vanish, one finds back
Newton's law P= – 2ηD. Although Maxwell's relation is useful at short
time scales (high frequencies), it is not satisfactory with the purpose to
describe short length scales wherein non-localities play a preponderant
role, for instance fluids in presence of nanoparticles.

In more complex materials like in nanofluids, fluxes of higher order
should be introduced as extra states variables. Non-local effects, which
are important in presence of nanoparticles, are elegantly accounted for,
in the framework of EIT, by appealing to a hierarchy of fluxes P (2)

(^P), P(3), … PN) where the second order tensor P(2) is identified with
the usual viscous pressure tensor P, P(3) (a tensor of rank three) is the
flux of the pressure tensor, …etc. Here for simplicity, we limit our de-
velopments to the use of P and P (3) as flux state variables but there will
be no difficulty to include higher order tensors as P(4), … P(N) as done
previously in the problem of non-local heat conduction wherein an
infinite number of extra fluxes have been introduced [30–32]. From the
kinetic theory point of view, P(2) and P(3) represent the second and third
order moments of the velocity distribution. Written in Cartesian co-
ordinates and designating by f the distribution function, the fluxes P(2)

and P(3) read as

∫ ∫≡ = =P P C C f dc P C C C f dc, ,ij ij i j ijk i j k
(2) (3)

(9)

with C= c-v the relative velocity of particles with respect to their mean
velocity v.

Up to the third-order moment approximation, which is sufficient for
the present purpose, the Gibbs equation generalizing expression (3)
takes the form

= − ⊗ − ⊗−P P P P P Pd s e T d e γ ρ d γ ρ d( , , , ...) ( / ) ( / ) ,t t t t
(3) 1

1 2
(3) (3)

(10)

while the entropy flux is no longer equal to zero but is given by

= ⊗J P Pβ ,s (3) (11)

with β, a phenomenological coefficient allowed to depend on e and the
volume fraction of the paticles but not on the flux variables. The en-
tropy production (4) is obtained by substitution of dts and Js from (10)
and (11) respectively and elimination of dt e via the energy balance (4),
the result is

= − ⊗ + − ∇ − ⊗ − ∇ ≥−P D P P P P Pσ T γ d β γ d β( . ) ( ) 0.s
t t

1
1

(3) (3)
2

(3)

(12)

The above bilinear expression in fluxes and forces (the quantities
between parentheses) suggests the following linear flux-force equations

+ = − + ∇−P P D Pγ d μ T β · ,t1 1
1 (3) (13)

+ = ∇P P Pγ d μ β ,t2
(3)

2
(3) (14)

wherein γn,β and μn (n=1,2) are phenomenological coefficients al-
lowed to depend in particular on the temperature and/or the relative
volume fraction of the constituents. Relations (13) and (14) can also be
viewed as time evolution equations for the fluxes P and P(3). Making use
of (13) and (14), expression (12) of the entropy production reads as

= ⊗ + ⊗ ≥P P P Pσ μ μ 0,s
1 2

(3) (3) (15)

from which follows that μ1≥ 0 and μ2≥ 0 to satisfy the positiveness of
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