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We will demonstrate, that in fiber suspensions the stress tensor has a skew-symmetric part, i.e. fiber suspensions
are micropolar fluids with non-zero couple stresses. Consequently, a continuum mechanical description of fiber
suspensions requires the consideration of the balance of angular momentum in addition to the balance equations
of mass, momentum and energy. An antisymmetric stress tensor is found for an isotropic orientation distribution
of deformable fibers as well as for an anisotropic distribution of fiber orientations.

Mainly, the method of classical Thermodynamics of Irreversible Processes with internal variables is applied.
The internal variables are fiber deformation variables and an orientation tensor in the case of a non-isotropic
distribution of fiber orientations. In addition to the result on couple stresses, relaxation equations for the bend
and twist deformation variables are derived.

Finally a mesoscopic background theory is discussed. In this approach a distribution of different fiber or-
ientations and fiber deformations is assumed. The fiber orientation and deformation are additional variables in
the domain of field quantities. The usual macroscopic fields of continuum mechanics are averages of mesoscopic
fields over the different orientations and deformations. Macroscopic quantities characterizing the orientational
order, the alignment tensors, and quantities characterizing fiber deformation, are defined by the help of the
distribution function. They are internal variables in the macroscopic theory. The mesoscopic theory also de-

monstrates, that there is a skew symmetric part of the stress tensor in fiber suspensions.

1. Introduction

Fiber suspensions are interesting not only from the theoretical point
of view, but they are very important as precursors of fiber composites.
For instance, fiber reinforced concrete becomes more and more im-
portant in civil engineering, and the fresh concrete before hardening is
a fiber suspension [1]. Another important example are glass or carbon
fibers in polymer melts. In the melt, the fibers are reoriented during a
flow process due to coupling between fiber orientation and velocity
gradient [2-4]. The resulting fiber compounds are harder and stiffer
than the pure polymer [5] and can be even electrically conducting in
special cases. The constitutive properties depend on the fiber orienta-
tion distribution. Therefore, a constitutive model for the preceding
polymer melt or fresh concrete with suspended fibers is important in
order to predict the influences on the fiber orientation [6,7]. In addition
to reorientation, the fibers may be deformed. The consequences of bend
and twist deformation on the fiber suspension will be investigated here.

A phenomenological theory of suspensions and emulsions of weakly
deformable spheres has been presented in [8]. The equations of motion
for the particle deformation, and the constitutive equation for the stress
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tensor have been derived in the whole range of concentrations of the
emulsion. They are generalizations of earlier work on dilute suspen-
sions [9-11] and emulsions [12,13]. Thermodynamic arguments have
been applied in order to reduce the number of unknown constitutive
coefficients. In semi-dilute suspensions hydrodynamic interactions be-
tween particles are important and their contribution to the stress tensor
has been investigated. As it is expected for all materials with an internal
structure the resulting stress tensor has an anti-symmetric part. An
overview over calculations of the stress tensor of suspensions of elastic
fibers of fixed orientation as well as on the stress tensor of rigid or-
ientable fibers can be found in [14]. In contrast to these publications,
we will consider both effects, fiber orientation and fiber deformation,
simultaneously.

Computer simulations of flexible fibers with interactions have been
presented in [15-19]. Simulated suspensions exhibit heterogeneous
structures, or flocculation, when the model fibers are flexible, have
deformed equilibrium shapes, and interact through static friction
forces. In another simulation [16] fibers undergo four different bending
modes: stable U-shape, slight swing, violent flapping, and stable closure
modes. However, the question of a skew-symmetric part of the stress
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tensor has not been investigated in these simulations. This is also the
case in most of the literature on continuum mechanics of fiber sus-
pensions: only the symmetric part of the stress tensor is considered (see
f.i. [20-23]). The balance of angular momentum is not taken into ac-
count.

The derivation of constitutive equations on the ground of kinetic
theory is similar for polymers (see f. i. [24]), which goes back to the
Jeffery-model [25], and suspensions of fibers. An application of the
stress tensor derived by Batchelor [26,27] from a kinetic background
theory to corner flow of suspensions of orientable rigid rods can be
found in [28]. The Jeffery-model has been generalized to a second
gradient flow [29,30]. In this case rod bending is activated, and size-
effects are predicted.

Finally the methods applied in the present paper, namely continuum
mechanics with internal variables and Thermodynamics of Irreversible
Processes has been applied successfully in other fields: liquid crystals
[31], plasticity of metals and other solids [32], polymer solutions.

In the last section the methods of the so called mesoscopic theory
are applied. This theory has been developed for liquid crystals [33-36].
For an overview over other possible applications see [37,38].

2. Irreversible thermodynamics of flexible fibers

The thermodynamic description of systems with dynamic (internal)
variables has been applied with success to several kind of physical
phenomena such as electric conduction [39] electric and magnetic
polarization [40-42] heat conduction and radiation [43-48] viscoe-
lastic and plastic deformations [49-62], liquid crystals [63]. The ther-
modynamic theory of visco-elasticity is based on dynamic variables
which are second order symmetric tensors. They are related to the
deformation of elastic micro-particles or to the distribution function of
orientations of rod like or disk like rigid particles. For example some
proteins, certain saccharoides, and liquid crystals are well approxi-
mated by the above model, but it fails, if particles are like elastic
slender bars, e.g., in the case of fiber suspensions, in which the particles
may be twisted and bent; their affine deformation is not relevant.

In the first part the flow induced anisotropy is neglected, and the
orientation distribution of the fibers is presumed isotropic. The purpose
here is to investigate the consequences of the flexibility of the particles.
The deformation of a particle (bend and twist) stores energy, so influ-
encing the macroscopic mechanical properties of the fluid. In the next
section, the influence of an anisotropic orientation distribution of fibers
is discussed.

In the following we will denote by the symbol : the contraction of
second order tensors over all indices, in components: A: B = Ay By;. The
scalar product between vectors a and b is denoted by a-b.

2.1. Deformation of a fiber

In our model the fibers are assumed to be straight if not loaded.
Then one can chose a coordinate s along this fiber orientation and an
orthogonal tensor U(s) describing the distortion of the fiber. The mac-
roscopic angular distortion tensor defined by

du

p: =UT.—

ds 2.1)

takes into account the local deformation of the flexible fibers, and is the
average over all fiber orientations in the continuum element. s is the
local coordinate along the fiber, and x is the position of the continuum
element. s is only introduced in order to describe the local fiber de-
formation.

The tensor ¢ is obviously skew-symmetric as U is orthogonal,
U'.U =, (2.2)

where § is the unit tensor and
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duTt du
U+ UT=—= =0,
ds ds (2.3)
ie.
T
(Ur.dﬂ) suriU_ o
ds ds (2.4

This way, we introduce the angular distortion vector (the vector
invariant of the angular distortion tensor) as

P XE=¢. (2.5)

Only in this case we will denote the vector by the symbol — in order to
distinguish it from the tensor ¢.

Let n denote the unit vector tangential to the undeformed fiber. The
scalar product of @ and n gives the twist:

= 5)11, (2.6)
and the component of a perpendicular to n is the bend:
b=% -nny) @2.7)

An illustrating example will be shown.

As the fibers are elastic, two material coefficients, torsion stiffness y,
and bending stiffness y;, have to be introduced. The torque acting in a
cross section of the fiber is given by

= @) + 1@ ~ n@y)] (2.8)
The elastic energy stored per unit length of a fiber is given by

_ & — 2 & =2 = 2
Ue =7 (gm)” + > (" = (gm)). (2.9)

The fibers are deformed by flow and they continuously relax. The
angular distortion of an individual fiber ¢ depends on the local or-
ientation of the fiber,

% =7 ™.

The function is odd, 3(—n) = —$(n), according to the definition of 5)
Eq. (2.1), as turning the fiber (changing @ (n) to  (—n)) gives a - sign
in the line element ds.

An obvious approximation for the function @ (n) is the first term of
its expansion by spherical harmonics;

(2.10)

() =an, (2.11)

where a is a second order pseudo tensor as @ is an axial vector.
VERHAS [64] elaborated the theory based on this linear approximation
and the theory gives only one relaxation time, while the relaxation
times for twist and bend are expected to differ. As it will be shown in
this section, the above shortcoming is ceased if the approximation
(2.11) is improved with a third order term (with a traceless tensor f8):

# () = an +n(n-fn), (2.12)
which can be decomposed as
E’(n) =aon + a%n + a®n — n(n-a®n) + n(n-T-n), (2.13)

where oy = 1/3tra, a® is the skew symmetric part of a, a? is the de-
viatoric part of @ and T is the deviatoric part of the sum of the tensors a
and B. The latter form shows the twist and bend separately; the first and
the last term are due to twist, while the others are due to bend.

Inserting the approximation Eq. (2.12), the elastic energy of a fiber
per unit fiber length reads

M Ton)? + b g dn — n(n-a’n))?
uc(n)—z(rxo+nTn)+2(oc n + a‘n — n(n-a“n))”, (2.14)

the average of which over all possible fiber orientations is
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