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A B S T R A C T

The evolution equations for the particle distribution functions are written in a divergence form applicable in
three dimensions. From this set, it is shown that the continuity equation and the equations of motion are satisfied
in Cartesian, cylindrical and spherical coordinates for all fluids when additional source terms are added to the
equations of evolution in the latter two coordinate systems. If the body forces are present, a new set of source
functions is required in each coordinate system and these are described as well. Next, the energy equation is
derived by using a separate set of particle distribution functions. Modifications of the relevant equations to be
applicable to incompressible fluids is described. The incorporation of boundary conditions and the description of
the numerical scheme for the simulation of the flows employing the new approach is given. Validation results
obtained through the modelling of a mixed convection flow of a Bingham fluid in a lid-driven square cavity, and
the steady flow of a Bingham fluid in a pipe of square cross-section are presented. Next, using the cylindrical
coordinate version of the evolution equations, numerical modelling of the steady flow of a Bingham fluid and the
Herschel–Bulkley fluid in a pipe of circular cross-section have been performed and compared with the simulation
results using the augmented Lagrangian method as well as the analytical solutions for the velocity field and the
flow rate. Finally, some comments on the theoretical differences between the present approach and the existing
formulations regarding Lattice Boltzmann Equations are offered.

1. Introduction

In the numerical modelling of the flows of Newtonian and non-
Newtonian fluids, the finite element method (FEM) is the preferred
option. However, it has become increasingly clear that FEM requires a
lot of CPU and is not fast enough. This outcome has led to the devel-
opment of two different numerical schemes: the first is based on the
smoothed-particle hydrodynamics (SPH) method which has been ap-
plied to non-Newtonian moulding flow by Fan et al. [1], and to the
simulation of solid bodies suspended in a shear flow of an Oldroyd-B
fluid by Hashemi et al. [2]; and the second scheme is the Lattice
Boltzmann equation (LBE) and its variant, namely the particle dis-
tribution function method.

Briefly, SPH works by dividing the fluid domain into a set of discrete
elements, also referred to as particles. These particles have a spatial
distance, known as the “smoothing length” h, over which their prop-
erties are “smoothed” by a kernel function. This means that the physical
quantity of any particle can be obtained by summing the relevant

properties of all the particles which lie within the range of the kernel.
For example, using Monaghan’s cubic spline kernel [3], the temperature
at position x depends on the temperatures of all the particles within a
radial distance 2h of x.

The contributions of each particle to a property are weighted ac-
cording to their distance from the particle of interest, and their density.
Mathematically, this is governed by the kernel function, W. The kernel
functions commonly used include the Gaussian function and the cubic
spline. The latter function is exactly zero for particles further away than
two smoothing lengths, unlike the Gaussian, where there is a small
contribution at any finite distance away. That is, the cubic spline has
the advantage of saving computational effort by not including the re-
latively minor contributions from distant particles. While the ad-
vantages of SPH are many, one drawback over grid-based techniques is
the need for large numbers of particles to produce simulations of
equivalent resolution.

In contrast with SPH, the particle distribution function method
employed here depends on fifteen (resp. twenty two) particles only to
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mimic the continuity equation and the equations of motion (resp. the
full set of continuity equation, the equations of motion and the energy
equation) applicable to the motion of a fluid. No averaging process as in
SPH is needed. As summarised by Huilgol and Kefayati [4], it is possible
to derive the continuity equation and Cauchy’s equations of motion for
a compressible Newtonian fluid, when one uses the Bhatnagar–-
Gross–Krook (BGK) approximation. In LBE, the derivations are based on
expanding the particle distribution functions as a Taylor series in u,
retaining terms up to order |u|2, where u is the macroscopic velocity,
with coefficients depending on the relaxation time and the grid spacing
and the time step. Hence, when one considers incompressible New-
tonian fluids, it is not surprising that the kinematic viscosity ν is re-
laxation time and grid-dependent, for it is given by [5]
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▵
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where τ is the relaxation time, △x is the grid size and △t is the time
step. Clearly, these restrictions on the viscosity make it difficult to
model the flows of non-Newtonian, incompressible fluids. For a com-
plete description of these matters, see Huilgol and Kefayati [4]. In ad-
dition to the problems arising from Eq. (1.1), Fu et al. [6–8], So et al.
[9] and Kam et al. [10] have reiterated the difficulties in employing the
LBE formulation in solving Navier–Stokes equations.

In order to overcome these inherent problems, new models for the
particle distribution functions are needed. In the Finite Difference
Lattice Boltzmann Method (FDLBM) due to Fu and So [6], the particle
distribution function leads to the conservation of mass and the equa-
tions of motion applicable to incompressible fluids, when the flows are
assumed to occur in a two dimensional setting underpinned by a D2Q9
lattice, using Cartesian coordinates only. These results were refined by
Huilgol and Kefayati [4] through the use of vector analysis and linear
algebra.

Next, in the Thermal Finite Difference Discrete Flux Method
(TFDDFM) proposed by Fu et al. [8], their approach was extended to
three dimensional problems using a D3Q15 lattice. The resulting
equations are capable of incorporating body forces; moreover, a new set
of particle distribution functions was employed to obtain the balance of
energy equation. These results were reformulated in [4] using simple
results from vector analysis and linear algebra, once again. The im-
portant point to note is that the previous restrictions on the pressure
and the viscosity are eliminated in these derivations [4,6,8], meaning
that one is free to choose a constitutive equation. That is, one can model
a Newtonian fluid, or power law fluids, or viscoelastic and viscoplastic
fluids. However, the derivations in [4,6,8] are suitable for Cartesian
coordinates only.

In the present work, we unify and extend the derivation of the
conservation of mass equation and Cauchy’s equations of motion to
Cartesian, cylindrical and spherical coordinates using linear algebra,
vector and dyadic analysis, in a 3D format. While the methodology
follows some of the features of the earlier work [4], the evolution
equation for the particle distribution function is written in a divergence
form with the addition of a new set of source functions; see Section 2. In
Section 3, it is shown that this new set of particle distribution functions
delivers the relevant equations applicable to flows in Cartesian, cy-
lindrical and spherical coordinates. In Section 4, additional source
functions to incorporate body forces are described and, in Section 5, the
energy equation is derived employing a new set of particle distribution
functions. In Section 6, the simple modifications necessary for the
equations to be applicable to incompressible fluids are listed. Next, in
Section 7 some comments on the incorporation of Dirichlet and stress
boundary conditions, and validation results, based on the works which
have appeared, are presented. Further, in Section 8, using the cylind-
rical coordinate version of the evolution equations, numerical model-
ling of the steady flow of a Bingham fluid and the Herschel–Bulkley
fluid in a pipe of circular cross-section have been performed have been
performed and compared with the simulation results using the

augmented Lagrangian method as well as the analytical solutions for
the velocity field and the flow rate. Finally, in the Concluding Remarks,
some comments on the theoretical differences between the present
approach and the existing formulations regarding Lattice Boltzmann
Equations are offered.

It has to be noted that additional source functions have been em-
ployed in modelling non-swirling, axisymmetric flows of in-
compressible Newtonian fluids in cylindrical coordinates; for example,
see the review by Huang and Lu [11], which has been extended to every
axisymmetric flow in the review by Zhang et al. [12]. In these two
reviews, the derivations are based on expanding the particle distribu-
tion functions as a Taylor series in u, retaining terms up to order |u|2,
where u is the macroscopic velocity. In the derivation employed here,
the expansion occurs as a Taylor series in the microscopic particle ve-
locity ξα, retaining terms up to |ξα|2. As shown in Appendix A, it is not
easy to compare the two methods of derivation. Leaving this aside, in
the reviews [11,12], one finds that two time partial derivative time
scales may be needed in some models. Or, two different sets of source
terms are needed in recovering the Navier–Stokes equations. In the
present work, only one relaxation time is needed and only one set of
source functions is needed in cylindrical and spherical coordinates and
none in Cartesian coordinates. Additionally, there are other differences
between the source functions in [11,12] and those needed here to
model the flows in cylindrical coordinates; see Section 3.2.

Finally, it has to be emphasised here that the evolution equations
deal with all fluids, compressible of incompressible, and apply to every
coordinate system employed regularly in fluid dynamics. Some of the
dyadic products and related material used in the body of the paper,
along with direct verifications that the equations of motion are cor-
rectly derived in cylindrical and spherical coordinates, are provided in
Appendix B.

2. Particle distribution function

First of all, the evolution equation is usually written as follows:

∂
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eq
(2.1)

where ξα are the lattice vectors, modelled after the D3Q15 lattice and
defined in Table 1 below, and ε is a small parameter to be prescribed
when numerical simulations are considered, τ is the collision relaxation
time, and fα

eq is the equilibrium distribution function. One notes that in
numerical modelling, the product ετ is replaced by a suitably chosen
non-dimensionalised time step.

In order to consider three dimensional flows, whether they be in
Cartesian or cylindrical or spherical coordinates, the evolution Eq. (2.1)
has to be modified. That is, the evolution equation for the particle

Table 1
Subscripts and microscopic velocities.

Value of α ξα/σ

0 0
1 e1
2 e2
3 − e1
4 − e2
5 e3
6 − e3
7 + +e e e1 2 3
8 − + +e e e1 2 3
9 − − +e e e1 2 3
10 − +e e e1 2 3
11 + −e e e1 2 3
12 − + −e e e1 2 3
13 − − −e e e1 2 3
14 − −e e e1 2 3
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