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a b s t r a c t

The PEC (partially extending strand convection) model of Larson is able to describe thixotropic yield stress

behavior in the limit where the relaxation time is large relative to the retardation time. In this paper, we

discuss the development of shear bands in a Poiseuille flow which is started up from rest with an imposed

pressure gradient. We analyze the asymptotic limit of large relaxation time; the small parameter ε measures

the ratio of retardation time to relaxation time. We determine the position and width of shear bands as

a function of time. We identify an initial phase of “fast yielding” during which the width of the transition

between high and low shear rate regions behaves like t−3. This continues until t (measured on the scale of the

retardation time) is on the order of ε−1/3. Then there is a phase of “delayed yielding” during which the width

of the transition is of order ε. Eventually, the width sharpens as 1/(ε2t3). We also show how these results are

modified by introducing Korteweg stresses which prevent the transition from becoming infinitely sharp and

also change the location where the transition takes place.

This paper is dedicated to Roger Tanner on the occasion of his eighty-second birthday.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Experiments on many yield stress fluids show phenomena which

are not explained by traditional models like Bingham or Herschel–

Bulkley, such as stress overshoots, yield stress hysteresis, shear band-

ing, “delayed yielding” (i.e. the fluid yields at a lower stress when the

stress is imposed over a longer time), and thixotropy. We refer to, for

instance [4–7,14,19,22,28].

Theoretical efforts to capture complex yield behavior often add a

structure parameter to “simple” yield stress fluids such as the Bing-

ham or Herschel–Bulkley model. For instance, the viscosity [24] or

the power law exponent [11] may depend on the structure param-

eter, which in turn is influenced by the deformation. An alternative

approach is a viscoelastic model, in which yield stress behavior arises

in the limit where the relaxation time becomes large. Such an ap-

proach can be viewed as a precise mathematical elaboration of the

thesis that the yield stress is a “myth” and that apparent yield stress

behavior hides phenomena on unresolved time scales [3]. In [25], the

behavior of the PEC (partially extending strand convection) model of

Larson [16] in homogeneous shear flow was analyzed for the limit of

large relaxation time and was found to exhibit the salient features of

thixotropic yield stress fluids. This model was first proposed for en-

tangled polymer melts, but has recently been applied to wormlike

micelles [31]. Such fluids are often viewed as “apparent” yield stress
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fluids, since they undergo a yielding transition where the viscosity

jumps by two or three orders of magnitude, but they can be observed

to flow in the unyielded state.

A separation of time scales is essential for thixotropic behavior.

Basically, such behavior depends on a slow evolution of microstruc-

ture in apparent absence of deformation. The limit of large relaxation

time provides such a separation of time scales. In the PEC model, the

yield stress behavior arises naturally as a consequence of the model

rather than being built into it. Singularly perturbed dynamical sys-

tems with “fast” and “slow” time scales arise in the analysis, leading

to three asymptotic regimes, a fast elastic regime, a flowing yielded

regime, and a slow dynamics during which there is almost no defor-

mation, but the microstructure slowly changes.

We follow the formulation of the PEC model given in [25]; the

equivalence to Larson’s original formulation is discussed there. The

model can be described in terms of a conformation tensor C, which

satisfies a differential equation of the form

C∇ + ε(φ( tr C)C − χ( tr C)I) = 0. (1)

Here C∇ denotes the upper convected time derivative. The relaxation

time 1/ε is assumed to be large. The stress tensor T is related to C by

T = ψ( tr C)C. (2)

In this formulation, φ, ψ and χ are constitutive functions, which can

in principle be specified arbitrarily. We can view this model as a mod-

ification of the upper convected Maxwell model, in which the vis-

cosity and relaxation time depend on the “structure parameter” tr C.

With this interpretation, the model has a certain similarity with other
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efforts to model yield stress fluids; the main difference being that

the starting point is a viscoelastic theory rather than a yield stress

theory. The model in the form given above is similar to dumbbell

based models of dilute polymer solutions. However, the constitutive

functions are quite different from those typically used in that situ-

ation. For the PEC model, we specifically have, with s denoting tr C,

φ(s) = χ(s) = s + α, ψ(s) = k/(s + α), where k is a stress modulus

and α > −3 is a dimensionless constant.

In parallel shear flow, we have C22 = C33 = 1, C13 = C23 = 0, s =
C11 + 2 + α, and the above model reduces to

˙C11 = 2κC12 + ε(s + α)(1 − C11),

˙C12 = κ − ε(s + α)C12. (3)

Here κ is the shear rate, the flow is in the “1” direction, and the ve-

locity varies across the “2” direction. We assume that the total stress

consists of the stress given by the PEC model plus a Newtonian stress

with viscosity η. Hence if τ is the total shear stress, we have

κ := 1

η
(τ − T12) = 1

η

(
τ − kC12

s + α

)
. (4)

The parameter k has the dimension of stress; specifically, the linear

stress modulus is equal to k/(3 + α). There are two relevant time

scales in this model; the relaxation time

τ1 = 1

(3 + α)ε
,

and the retardation time

τ2 = (3 + α)η

k
.

Throughout, our analysis will be based on assuming that τ 1/τ 2 is

large. We can alternatively characterize τ 1/τ 2 as the ratio of un-

yielded to yielded viscosity.

We shall nondimensionalize stresses by scaling with k, so we shall

set k = 1 in the following. Moreover, we shall scale time with η/k,

so we shall also set η = 1. The parameter ε is then a dimensionless

measure of an inverse relaxation time. We can also eliminate α from

the equations. Specifically, if we scale C12 with
√

3 + α, C11 − 1 with

3 + α, τ with 1/
√

3 + α, time with 3 + α and ε with (3 + α)−2, then

α scales out of the equations. For the rest of this paper, we have arbi-

trarily set α = 1.

The steady shear behavior of the PEC model shows a nonmono-

tone stress versus shear rate curve. There is therefore a range of shear

stresses where two different shear rates (a “yielded” and “unyielded”

state) are possible and a range of shear rates where no stable steady

state exists. This leads to the phenomena of shear banding and shear

stress hysteresis, see for instance [20,23]. In this paper, we shall be

concerned with the time-dependent startup of shear flow under a

given imposed shear stress.

The asymptotic analysis of solutions to (3) involves the interplay

of several dynamic regimes. The simplest of these is obtained simply

be setting ε = 0 in the equations. We shall refer to the resulting limit

as “fast” dynamics. There are two potential reasons why the neglected

ε terms may become relevant, however:

1. The observation time is long (of order 1/ε), and therefore, even

though the short term effect of the ε term is negligible, its cumu-

lative effect must be considered. This will be referred to as “slow”

dynamics.

2. The components of C are large, so even if ε is small, it is multi-

plied by a large number in the equations. This leads to “yielded”

dynamics.

In [25], the startup of shear flow was considered. That is, we start

from an initial condition C12 = 0, C11 = 1, impose a constant value of

the shear stress τ and then follow the evolution of the solution of (3).

As shown in [25], the behavior can be described as follows:

1. If τ > 1/4, then fast yielding occurs. The dynamics transitions from

fast to yielded dynamics.

2. If 1/(4
√

2) < τ < 1/4, delayed yielding occurs. The dynamics

transitions from fast to slow dynamics, but after a long time (of

order 1/ε), there is another transition from slow to fast and even-

tually to yielded dynamics.

3. If τ < 1/(4
√

2), slow dynamics reaches a steady state, and the

flow remains unyielded.

In this paper, we shall consider the start up of plane Poiseuille

flow. The flow is in the x direction, and the velocity varies in the y di-

rection (in the index notation used above, these direction correspond

to index 1 and 2, respectively). For negligible inertia, the momentum

balance is given by

∂τ

∂y
= ∂ p

∂x
. (5)

If Q is the imposed pressure gradient, we therefore have ∂τ/∂y = Q,

and if the centerline of the channel is at y = 0, we find τ = Qy. There-

fore, Poiseuille flow with imposed pressure gradient is equivalent to

a one-parameter family of problems with imposed shear stress; this

imposed shear stress varies linearly with location. We shall choose

the imposed pressure gradient large enough to cause yielding near

the channel walls, while at the center of the channel the shear stress

is always zero, so the material remains unyielded. A sharp transition

layer forms which separates yielded and unyielded regions. To un-

derstand the behavior of this transition region, we need to analyze

not just the temporal behavior of solutions for given τ , but also the

variation of the solution with τ . We can nondimensionlize length so

that Q = 1, i.e. τ = y. We therefore do not need to distinguish in the

following between the imposed shear stress and the location in the

channel. We shall assume that the half width of the channel is at least

1/4, so that fast yielding will occur near the walls of the channel.

We remark that the flow analyzed in this paper is stress con-

trolled, while most experiments are strain controlled. In a strain con-

trolled experiment, thixotropic yield stress fluids will exhibit shear

banding with a homogeneous stress (see e.g. [20,23]. On the other

hand, in a stress controlled experiment which starts from the un-

yielded state, the fluid remains unyielded as long as this is possible,

and will yield only if the imposed stress exceeds the maximum in the

steady flow curve.

2. The development of shear bands

The analysis in the following will focus on the yield time, i.e. the

time which passes between the initial start up of the flow and the

time when the fluid yields. The yield time will be of order 1 if τ >

1/4, of order 1/ε if 1/(4
√

2) < τ < 1/4, and there there is no yielding

if τ < 1/(4
√

2). A more complicated analysis is needed to elucidate

the specifics of the transitions between these regimes when τ is close

to 1/4 or, respectively, 1/(4
√

2). We shall discuss various rescalings of

the equations leading to certain asymptotic regimes in these transi-

tion zones. Before we analyze this in detail, we discuss a relationship

between the variation of the yield time as a function of τ , and the

width of the transition between yielded and unyielded regions.

Let T(τ , κ) be the time when the shear rate reaches κ . We can pick

κ to be a suitable value and identify the position of the yield zone at

time T as the inverse function τ (T, κ). To determine the width of the

transition region, let K(τ , t) be the shear rate at position τ and time

t; this shear rate is given by (4) with C12, C11 given by the solution of

(3). Clearly, we have

K(τ, T(τ, κ)) = κ. (6)

We differentiate this equation with respect to τ and find

Kτ + Kt Tτ = 0. (7)
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