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a b s t r a c t 

We analyze the transiences in rotational electro-osmotic flow of a viscoelastic fluid in a microfluidic chan- 

nel. We here use Oldroyd-B equations to model the viscoelastic fluid. We bring out the rotation induced 

complex flow dynamics during the transience, leading to possible augmentations in mixing, as modulated 

by the modifications in the force distribution in the flow-field. We attribute alterations in these forces as 

a combined consequence of the modifications in stress under the simultaneous action of rotation and 

electrical forcing and its interplay with the elastic stress originating from the viscoelastic effects. We also 

highlight on the volumetric transport characteristics as dictated by the underlying dynamical conditions. 

The inferences obtained from the present study may bear significant consequences in the design of vari- 

ous microfluidic devices, which are commonly used for the transportation of bio-fluids such as blood. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Rotational fluidics addresses the flow physics in confinements 

under angular motion [1–4] . Such considerations are important for 

the design and analysis of portable devices (for example, lab-on- 

a-CD) tailored for a plethora of applications ranging from aug- 

mented microfluidic mixing [5–13] to medical diagnostics [5,14,15] . 

While several studies have been reported on the fluid dynam- 

ics in rotationally actuated devices [16–18] , most of the perti- 

nent investigations have considered simple constitutive models 

[19–22] for capturing the essential physics of interest. In ad- 

dition, influences of other actuating parameters (such as elec- 

tric field) have not been commonly considered towards inter- 

rogating the possibilities of realizing augmented functionalities 

of the rotationally actuated devices. Such a paradigm, however, 

could be potentially possible, by considering the interplays of the 

various forcing parameters. The underlying physical considerations 

are expected to be by no means trivial, because of plausible com- 

plicated non-linear interaction between the various forcing param- 

eters (mediated by the inertial effects) as well as the flow rheol- 

ogy. The issue of complex rheological characteristics becomes even 

more relevant, when one intend to employ typical biological flu- 

ids like blood (for example, for medical diagnostic applications) 

[5,14,23] , in rotationally actuated microfluidic devices. 
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We would like to mention here that although the viscoelas- 

tic model is mathematically convoluted, it captures the intricate 

rheological effects of many biological fluids on the flow dynam- 

ics quite efficiently. Also it should be highlighted in this context 

here that the lab-on-a CD based microfluidic devices that are com- 

monly used for the transportation and analysis of DNA solutions, 

blood and bio-fluids are intrinsically actuated by rotational means. 

Such devices require a delicate compromise between mixing and 

throughput [5,15,24,25] . Accounting above all issues, an attempt 

towards addressing the underlying dynamical behavior of a vis- 

coelastic fluid in a rotation induced flow environment as modu- 

lated by the electrical double layer effect could be an interesting 

proposition, mainly attributed to the rich physical interplay of var- 

ious spatio-temporal scales involved, as well as to its practical rel- 

evance to the flow of complex rheological fluids like biological flu- 

ids in a rotational frame, which are commonly used in medical 

diagnostics. 

Here, we attempt to analyze the electrically driven transport 

of viscoelastic fluids in a rotating microfluidic channel. In addition 

to the rotational forces, we consider electro-osmotic effects due to 

interactions between an induced surface charge and a driving ax- 

ial electric field. We consider thick but non-overlapping electrical 

double layers (EDLs) adhering to the channel walls, in order to re- 

solve the charge distribution in the channel. Our results demon- 

strate that because of non-linearities in the flow, the resultant ef- 

fect of rotational and electro-kinetically driven microfluidics is not 

a mere linear superposition. We believe that our results may be 

of potential interest towards designing rapid diagnostic devices in 
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List of Symbols 

H half-height of the channel, m 

E applied electric field, V/m 

u velocity vector, m/s 

k B Boltzmann constant, m 

2 kg/s 2 K 

n ± co-ion and counter-ion number density 

n ∞ 

ionic concentration in the bulk 

e elementary electric charge, C 

p pressure, Pa 

T fluid stress tensor, N/m 

2 

P modified pressure, Pa 

x axial coordinate, m 

y transverse coordinate, m 

z transverse coordinate, m 

u velocity in x- direction, m/s 

v velocity in y -direction, m/s 

w velocity in z -direction, m/s 

T xx fluid stress tensor component along x direction in 

y-z plane, N/m 

2 

T xy fluid stress tensor component along y direction in 

y-z plane, N/m 

2 

T xz fluid stress tensor component along z direction in 

y-z plane, N/m 

2 

T yx fluid stress tensor component along x direction in 

x-z plane, N/m 

2 

T yy fluid stress tensor component along y direction in 

x-z plane, N/m 

2 

T yz fluid stress tensor component along z direction in 

x-z plane, N/m 

2 

T zx fluid stress tensor component along x direction in 

x-y plane, N/m 

2 

T yz fluid stress tensor component along y direction in 

x-y plane, N/m 

2 

T zz fluid stress tensor component along z direction in 

x-y plane, N/m 

2 

u HS Helmholtz-Smoluchowski (HS) velocity, m/s 

T absolute temperature, K 

t time, s 

Q volumetric flow rate, m 

3 /s/m 

Re � rotational Reynolds number, ρUH /μ
Wi Weissenberg number 

Greek symbols 

� angular velocity vector, rad/s 

ρ density of the fluid, kg/m 

3 

ρe ionic charge density, C/m 

3 

ψ electrical potential, V 

λ EDL thickness, nm 

κ Debye–Hückel parameter (inverse of EDL thickness) 

η dynamic viscosity, Pa-s 

λ1 fluid relaxation time, s 

λ2 fluid relaxation time, s 

β ratio of the relaxation to the retardation times of 

the fluid 

ς ion valence 

ε permittivity, C/Vm 

θ angle of flow 

Subscripts 

w wall 

x along x- direction 

y along y- direction 

x 

z 

2H

E

Upper wall 

Lower wall

y 

Oldroyd-B  Fluid

Fig. 1. (Color online) Schematic depicting the problem considered in the present 

study. The physical dimensions of the channel along with the direction of applied 

forces are shown in the schematic. The channel is rotating about z-axis with a con- 

stant angular velocity �. The coordinate system is also rotating with the channel. 

The applied electric field E makes the flow occur in x -direction (axial) of the chan- 

nel, while the channel rotation induced the flow velocity in the lateral direction 

( y -direction) as well. 

rotationally actuated environment, simultaneously tuned by 

electro-kinetic influences. 

2. Problem description and mathematical formulation of the 

problem 

We consider an unsteady flow of viscoelastic fluid in a rotating 

microfluidic channel as schematically depicted in Fig. 1 . We here 

describe the flow dynamics with respect to the coordinate system, 

which is rotating with the channel itself (see Fig. 1 ). The coordinate 

axes x, y and z are directed along the length, width and height of 

the channel respectively. The channel is rotating about z axis at 

a constant angular velocity � = ( 0 , 0 , �) . We consider that the 

length and width of the channel are much larger than its height, 

i.e., length > width >> height. The fluid is considered to be initially 

at rest, while the combined consequences of the applied electric 

field E = ( E x , 0 , 0 ) in the x-direction along with the rotational ef- 

fect of the channel along z-direction make the flow occur in the 

channel. In the present study, we consider Oldroyd-B model for 

representing the constitutive behavior of the viscoelastic fluid. We 

further consider the height of the channel to be 2 H. 

2.1. The velocity distribution in the flow field 

The governing equations of the flow dynamics, relative to the 

frame of the rotating channel as considered in this study, are given 

by [26–28] , 

∇ · u = 0 (1) 

ρ

(
∂u 

∂t 
+ ( u · ∇ ) u + 2 

(
�
 � × u 

)
+ � × ( � × r ) 

)
= −∇p + ∇ · T + ρe E (2) 

In Eq. (2) , T is the stress tensor and ρe E is the electro-osmotic 

body force per unit volume, u is the velocity vector, r is the ra- 

dial coordinate and � is the angular velocity vector. The stress ten- 

sor equation following the Oldroyd-B constitutive model equation 

is given by [29,30] , 

T + λ1 

∇ 

T 

= 2 η

(
D + λ2 

∇ 

D 

)
(3) 

where, the upper convected derivative of T is defined as [31] , 

∇ 

T 

= 

∂T 

∂t 
+ ( u · ∇ ) · T − ( ∇u ) · T − T · ( ∇u ) 

T 
(4) 
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