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a b s t r a c t

In this paper, analytical equations are derived for predicting the flow of time independent non-Newtonian flu-

ids through a two-dimensional granular porous structure and validated numerically. These equations were

then used in the analytical expressions for the volumetric flow rates of generalised Newtonian fluids flow-

ing inside a composite channel, consisting of a free-flow region adjacent to an infinite porous domain. The

analytical equations are validated numerically and modifications are proposed. Commercial CFD software is

used in these numerical validations where fluid flow is considered at a continuum level.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Analytical models were proposed by Cloete and Smit [10] for

Herschel–Bulkley fluids [5,25] traversing both three-dimensional

consolidated (i.e. sponges or foams) and unconsolidated (i.e. gran-

ular media) porous regions. These porous domains were assumed to

be homogeneous and the effects of exterior macroscopic boundaries

were neglected. By making appropriate substitutions, these mod-

els included Newtonian, Bingham plastic and power law fluids, and,

without stating it explicitly, also Casson fluids. In this paper a similar

analytical technique is followed to formulate expressions for unidi-

rectional fibre beds to be applied to two-dimensional case studies.

In a later analytical study by Cloete et al. [11], the influence the

exterior macroscopic boundaries has on the profile of the phase aver-

age of the velocity was estimated by assuming a Brinkman-like effect

[4]. The porous region was assumed to be homogeneous up to these

external boundaries and the phase average of the velocity was as-

sumed to be zero at the exterior walls. In the present paper, the first

of these assumptions is investigated and an alteration to the exist-

ing model [11], where a change in porosity close to the macroscopic

external boundary has been incorporated, is proposed. In the litera-

ture, adjusting the porosity close to external boundaries is not an un-

familiar approach. Cohen and Metzner [12] considered flow through

a cylindrical column packed with spheres. The cross-sectional area
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of the column was divided into three domains where the porosity

was denoted as a spatial varying functions in the outer two regions.

In addition, to incorporate the friction due to the column walls, the

work of Mehta and Hawley [27] was followed where the hydraulic ra-

dius was redefined by adding the ratio between the wetted surface of

the wall and the bed volume to the denominator. Both the porosity

functions and the newly defined hydraulic radius were then utilised

at the wall regions in the capillary tube model and the volumetric

flow rate was determined by integrating over the three respective re-

gions. Nield [29] used a two domain approach, yielding similar re-

sults to this three domain approach [12]. Rao and Chhabra [32] substi-

tuted the redefined hydraulic radius (also applied to a capillary-tube

porous model) into the power law model proposed by Kemblowski

and Michniewicz [22] without altering the porosity. Here [32], by al-

tering the hydraulic radius, the wall effect is introduced globally over

the entire porous structure. This method varies slightly from that of

Cohen and Metzner [12], where the modified hydraulic radius (along

with the varying porosity) was only used close to the exterior wall.

Other studies where external macroscopic wall effects were incor-

porated without the alteration of porosity were e.g. Comiti and Re-

naud [13] (applied to Newtonian fluids) and Sabiri and Comiti [33]

(for power law fluids) who made a global adjustment to the definition

of the dynamic specific surface area by including the surface area of

the cylindrical container.

In the present paper free-flow over a porous domain is consid-

ered. Flow in such a composite domain has long been under inves-

tigation. The pioneer work of Beavers and Joseph [3], that served

as a corner stone for many later studies, focused on the flow of
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Newtonian fluids over a porous surface. This study was both ana-

lytical and experimental. They assumed that the forced flow in the

open channel was described by Stokes’ equation and below a transi-

tion layer (where shear effects are transmitted into the porous struc-

ture), in the isotropic, homogeneous porous medium, Darcy’s law was

assumed to be abided by. The velocity profile in the transition layer

was not modelled analytically. However, from experimental results

they observed that the velocity at the porous-fluid interface can be

much greater than the Darcy velocity. Semi-empirical expressions for

the flow in the free-flow domain and velocity at the porous-fluid in-

terface were derived. In a later study by Neale and Nader [28] the

fully developed velocity profiles of both regions were derived analyt-

ically for Newtonian fluids. The same modelling procedure as Beavers

and Joseph [3] was followed for flow in the free-flow region and the

profile of the averaged velocity in the porous medium was obtained

by solving Brinkman’s equation [4]. Shear stress continuity was en-

forced as a boundary condition at the fluid-porous interface. Cloete

et al. [11] followed the technique of Neale and Nader [28] and applied

it to non-Newtonian fluids and implemented earlier derived apparent

permeability models [10].

In the present study a model estimating the permeability of an

infinite two-dimensional porous medium is derived. These perme-

abities were then implemented in the model of Cloete et al. [11] for

flow over such a two-dimensional porous structure. The results from

these analytical expressions are validated with numerically obtained

data and modifications are proposed.

1.1. Some background on flow through porous media: Volume averaged

momentum transport equation

By making use of standard volume averaging techniques [1], the

momentum transport equation and the continuity equation, govern-

ing flow in a porous medium at a continuum level, may be written

into macroscopic form. It is assumed that the porous structure is

rigid, the fluid is incompressible and homogeneous and that the no-

slip boundary condition is applicable at the interstitial fluid-solid in-

terfaces. The representative elementary volume (REV) is defined as an

arbitrary volume which is statistically representative of all the physi-

cal properties, of the porous domain, in the immediate vicinity of the

point where the centroid of the REV is located. Volume averaging over

an REV with volume Vo yields the following equation governing the

average fluid flow through any type of porous structure [11]:

ρ
∂q

∂t
+ ρ ∇· [uq] = −ε∇〈p〉 f + ∇·[〈η〉 f ∇q] + ∇q · ∇〈η〉 f

− 1

Vo

∫∫
S f s

({p}n − n · η∇v)dS. (1)

In this paper, 〈 〉 f and {} denote the intrinsic phase average and the

deviation at a point with respect to the intrinsic phase average, re-

spectively, for any given quantity defined inside the fluid phase re-

gion within an REV. As customary, ρ , p and η denote the fluid density,

the static pressure and the apparent viscosity of the non-Newtonian

fluid, respectively. The total fluid-solid interface inside the REV is de-

noted by S f s and the local porosity (void space fraction) of the con-

sidered REV is represented by ε. In Eq. (1), u and q denote the intrin-

sic phase average and the phase average of the velocity, respectively.

Both these velocity averages are orientated in the local streamwise di-

rection, n̂, and following from the Dupuit–Forchheimer relationship

[17], q = εu. The velocity at a continuum level inside the interstitial

pores is represented by v. The unit vector, n, is the normal vector on

S f s as well as the fluid-fluid interfaces on the outer surface of the REV

and is directed into the solid phase or to the outside of the REV. In the

derivation process of Eq. (1), following Bear and Bachmat [2] where

the momentum dispersion term was assumed to be negligibly small

in comparison to the macroscopic convection term, Cloete et al. [11]

made a similar assumption regarding the volume averaged diffusion

term for generalised Newtonian fluids.

The only applicable body force is gravity and therefore all three

vector components of the body force are uniform vector fields. Since

the curl of both a uniform vector field and the gradient of a quantity

is zero, the body force may be expressed as a gradient and incorpo-

rated as part of the pressure gradient term. Thus, in Eq. (1) and for the

remainder of this paper, ∇ 〈p〉 f incorporates both the static pressure

gradient as well as the body force.

2. Infinite porous domain

If the effect due to external boundaries is disregarded and the

phase average of the velocity is assumed to be time independent and

uniform, Eq. (1) reduces to

−∇〈p〉 f = 1

V f

∫∫
S f s

({p}n − n · η∇v)dS, (2)

where V f denotes the volume occupied by fluid within the REV, i.e.

V f = εVo. In order to solve this integral, the interstitial velocity gradi-

ents at the fluid-solid interfaces of the pores (of which the geometry

must also be known) is required. Therefore pore-scale models have

to be utilised to estimate the resisting force exerted by the porous

structure on the traversing fluid.

2.1. Secondary averaging

By making use of modified representative unit cell (RUC) models

(an idea that was initiated by Du Plessis and Masliyah [15]), Cloete

and Smit [10] proposed analytical expressions to estimate the mag-

nitude of the integral in Eq. (2) for Herschel–Bulkley fluids travers-

ing both consolidated and unconsolidated porous media. In the RUC

modelling technique only the average morphology over an REV is

required. This model is based on the assumption that the fluid tra-

verses the porous medium in imaginary streamtubes and, in a three-

dimensional case study, four of the outer surfaces of the RUC are ori-

entated parallel and two faces are orientated perpendicular to an en-

closed streamtube. An RUC is defined as the smallest possible cell

in which the statistical average geometrical properties of the REV

it is representing (e.g. the local average porosity and the tortuosity)

and the local flow conditions (e.g. the gradient of the intrinsic phase

average of the pressure) can be imbedded. The centroid of the REV

and corresponding RUC coincides and the REVs and RUCs pertaining

to two adjacent mathematical points thus overlap. The RUC should

therefore not be viewed as a repetitive building block with which the

porous medium can be reconstructed theoretically, as is the case in

some other unit cell models [19].

Eq. (2) may therefore be rewritten in terms of RUC-dimensions as

follows

−∇〈p〉 f = 1

Vf

∫∫
S f s

({p}n − n · η∇v)dS, (3)

where Vf and Sfs represent the volume occupied by the fluid phase

and the total fluid-solid interfaces, now with respect to an RUC.

The core of the RUC-model (as it was adapted by Du Plessis and

Diedericks [14]) was based on finding an expression for the inter-

stitial wall shear stress, |τw‖|, in terms of the average fluid speed

within the local streamwise orientated interstitial channels, v‖. For

viscoplastic fluids, this was accomplished by Cloete and Smit [10]by

making use of the asymptote matching technique that was proposed

by Churchill and Usagi [7]. Here, the two limiting conditions consid-

ered for the wall shear stress were where no-shearing effects occur

and a no-plug power law limit has been reached:
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