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a b s t r a c t

Peristaltic flow of a viscoplastic fluid which obeys the bi-viscous (Bingham) model as its constitutive equa-

tion is numerically studied in a planar two-dimensional channel using the multiple-relaxation-time lattice

Boltzmann method (MRT-LBM). Numerical results could be obtained at large Reynolds numbers for arbitrary

set of wavelength and amplitude ratios of the peristaltic wave. It is shown that depending on the Reynolds

number, a fluid’s yield stress may increase or decrease the time-mean flow rate of peristaltic pumps. Our nu-

merical results also show that for yield-stress fluids there exists a threshold wave number above which the

yield stress can accelerate fluid transport whereas below which it can have a decelerating effect. The yield

stress is also predicted to diminish the size of the fluid bolus in the “trap” phenomenon for certain set of

parameters.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A wave propagating along the flexible wall(s) of a channel is

known to force the contained fluid to flow in the same direction, even

when there is no external pressure gradient involved. The flow, which

is referred to as peristalsis, is of prime importance in biomechanics as

it is the mechanism through which physiological fluids such as blood

and urine are transported in human body. Further interest in this type

of flow originates from the fact that it is well-suited for the transport

of highly-viscous fluids such as high solids slurries. In addition, since

cross-contamination with exposed pump components cannot occur

in this type of flow, it has found widespread application in pump in-

dustry for the transport of corrosive and sterile fluids. For reasons like

these, peristalsis has been the subject of intensive studies in the past,

in both theoretical and experimental domains alike [1–10]. In the the-

oretical domain, simplified models have been developed in circular

and planar channels to better understand peristalsis and the param-

eters influencing its performance as a means of fluid transport. For

ease of analysis, early studies in this area have relied on several sim-

plifying assumptions chief among them are: (i) the Reynolds num-

ber is vanishingly small, (ii) the wavelength is infinitely long, and

(iii) the wave amplitude is sufficiently small [6,7]. The creeping-flow
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assumption has been an essential part of these studies as it allows

the governing equations to be reduced to that of the Stokes flow. The

long wavelength assumption, either separately or in conjunction with

the small amplitude-ratio assumption, has also proven very useful as

it allows perturbation techniques to be invoked for obtaining an an-

alytical or semi-analytical solution. None of these assumptions are,

strictly speaking, valid in the pump industry. Still, these approximate

studies have been quite successful in identifying the key role played

by a fluid’s viscosity on subtle issues such as the trap and reflux phe-

nomena as experimentally observed in peristaltic flows [1–5]. Quan-

titatively, however, comparison with experimental results is not al-

ways so great [8–10].

The discrepancy between theory and experiment is often realized

to have arisen from a violation of, at least, one or more of the above-

mentioned assumptions [11–13]. Another source of discrepancy can

be traced back to the notion that the test fluid used in these experi-

mental studies was more or less non-Newtonian. Physiological fluids

such as blood and industrial fluids such as drilling mud are known

to exhibit a variety of non-Newtonian behaviors. And, it is well es-

tablished that a fluid’s rheology can affect peristaltic flows in a non-

trivial way. For example, Boheme and Friedrich [14], and Siddiqui and

Schwarz [15] have shown that a fluid’s elasticity lowers the flow rate

in peristaltic flows, see also Refs. [16–21]. A similar result has been

found by Vajravelu et al. [22] as to the effect of a fluid’s yield stress

on such flows, see also Ref. [23]. Shear-thinning, on the other hand,

has been shown by Rao and Mishra [24] to increase the flow rate of

peristaltic flows.
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Nomenclature

a half-height of the unperturbed channel

b amplitude of the travelling wave

λ wavelength

c wave speed

x longitudinal coordinate in the laboratory frame

y longitudinal coordinate in the laboratory frame

h height of a point on the wall in the laboratory frame

t time

hu lateral coordinate of the upper wall

hl lateral coordinate of the lower wall

hmax half of the maximum height of the channel

vu velocity of the upper wall

vl velocity of the lower wall

u velocity vector of the fluid

ρ fluid’s density

p isotropic pressure

τ
∼

extra stress tensor

dij rate-of-deformation tensor

τ y fluid’s yield stress

μ0 viscosity of the un-yielded region in bi-viscous Bing-

ham model

μp viscosity of the yielded region

γ̇ second invariant of rate-of-deformation tensor

γ̇c critical shear rate of the bi-viscous Bingham model

c velocity vectors in lattice Boltzmann method

f probability distribution function

� collision matrix

f
eq
i

equilibrium distribution function

ξ relaxation time in the SRT-LBM

I identity matrix

M transformation matrix in the MRT-LBM

S relaxation matrix in the MRT-LBM

� ratio of the wetted fluid–solid link to its total length

α wave number

φ amplitude ratio

Bn Bingham number

Re Reynolds number

T period of the travelling wave

q time-mean flow rate in the laboratory frame of refer-

ence

Q dimensionless time mean flow rate in the laboratory

frame of reference

Although the above works have shed some light onto our under-

standing of the role played by a fluid’s rheology on the peristaltic

flow, an extension of these predictions to the industrial situations

is not straightforward. This is because these theoretical results have

been obtained based on restrictive assumptions quite similar to those

mentioned above for Newtonian fluids. These assumptions, which are

questionable even for Newtonian fluids, are less plausible for non-

Newtonian fluids, due mainly to the nonlinearity of their constitutive

behavior. This notion has beautifully been demonstrated by Ceniceros

and Fisher [25] when dealing with the peristaltic flow of a viscoelas-

tic fluid obeying the Oldroyd-B model. They have numerically shown

that, contrary to the published data obtained using the lubrication

theory [20], a fluid’s elasticity may increase or decrease the flow rate

of peristaltic pumps depending on the Weissenberg number of the

flow and the amplitude ratio of the propagating wave. In the present

work, we show that this is also true when dealing with peristaltic

flow of viscoplastic fluids. That is, it will be shown that depending on

the Reynolds number and the wavelength of the peristaltic wave, a

fluid’s yield stress may increase or decrease the flow rate of peristaltic

pumps. To show this, we rely on a full numerical analysis based on the

lattice Boltzmann method [26]. This robust numerical method has re-

cently been used with great success for simulating peristaltic trans-

port of a two-dimensional particle immersed in a Newtonian liquid

at moderate Reynolds numbers [27].

To reach its objectives, the work is organized as follows. We start

with developing the mathematical framework for peristaltic trans-

port of a viscoplastic fluid obeying the bi-viscous (Bingham) model in

a planar two-dimensional channel. We then proceed with describing

the numerical method of solution (i.e., the lattice Boltzmann method)

in some details. Numerical results are presented next addressing the

effect of the yield stress on the flow characteristics for a wide range of

Reynolds numbers, wave numbers, and amplitude ratios–to the best

of our knowledge, for the first time.

2. Mathematical formulation

We consider peristaltic flow of a viscoplastic fluid in a planar

channel under laminar and two-dimensional conditions. Our inter-

est in this particular geometry arises from the fact that it provides a

greater flexibility over its tubular version in peristalsis studies. That

is, we can fix one of the walls and investigate the asymmetric case, or

move the walls with a phase lag to see how it affects the flow char-

acteristics. In addition, it more easily yields itself to an experimental

investigation when needed. In the present work, however, we are in-

terested in the symmetric case only, as shown in Fig. 1.

To be able to verify our code with published data, we assume that

the waves propagating along the upper and lower walls of the chan-

nel are of the following forms [1–5]:

hu(x, t) = +a − b cos

[
2π

λ
(x − ct)

]
(1)

hl(x, t) = − a + b cos

[
2π

λ
(x − ct)

]
(2)

where subscripts “u” and “l” refer to the upper and lower walls, re-

spectively, a is the half-height of the unperturbed channel, b is the

amplitude of the travelling wave, λ is the wavelength, and c is the

wave speed (see Fig. 1). With the assumption that the channel is very

long so that an infinite (integral) number of waves are traveling along

the upper and lower walls, we allow ourselves to focus on just one

wave front, far from the two ends of the channel. This also means that

the pressure on both ends of the domain is the same for each wave

while there might be a pressure gradient within the domain itself. To

simplify the analysis, we ignore the effects of the gravitational force

as compared with the other forces involved in the channel. In addi-

tion, any coupling between the fluid and the elastic behavior of the

wall material, which is assumed to be mass-less, is ignored. We as-

sume that initially the fluid in the whole domain is at rest. At time

Fig. 1. Schematic showing the flow domain and its geometrical parameters.
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