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a b s t r a c t

Some physical experiments exhibit size-dependency for fluid flows at small scales. This in turn necessi-
tates the introduction of couple-stresses in the corresponding continuum theory. The resulting
size-dependent couple stress fluid mechanics can be used to explore a range of such non-Newtonian flow
behavior at micro- and nano-scales, and also to bridge between atomistic and classical continuum theo-
ries. Here we concentrate on two-dimensional flow and examine the effects of couple-stresses by devel-
oping and then applying a stream function-vorticity computational fluid dynamics formulation. Details
are provided both on the governing equations for size-dependent flow and on the corresponding numer-
ical implementation. Afterwards, the formulation is applied to the lid-driven cavity problem to examine
the behavior of the flow as a function of the length scale parameter l. The investigation covers a range of
Reynolds numbers, and includes an evaluation of the critical value beyond which a stationary response is
no longer possible. The additional boundary conditions associated with consistent couple stress theory
are found to play an important role in determining the flow pattern and critical Reynolds number.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Size-dependent responses of fluid flows have been recognized
in a range of important physical problems, including those involv-
ing biofluids, liquid crystals, lubrication and MEMS devices. On the
other hand, the classical Navier–Stokes theory for Newtonian fluids
lacks a characteristic length scale, which suggests that a general-
ization is needed to address adequately such problems exhibiting
size-dependency. However, for a theory to be accepted as a gener-
alization of the Navier–Stokes formulation, three stages of verifica-
tion and validation must be satisfied. Firstly, the theory must be
self-consistent, with no indeterminacies. Unless a theory is fully
consistent, there is no point to moving forward. Secondly, the the-
ory should be tested on several simple well-known examples,
either analytically or computationally, to examine the conse-
quences of the generalization. Finally, the theory must be com-
pared critically with a number of detailed physical experiments
designed to test predicted new features of fluid flows. In the pre-
sent paper, we focus on the second of these stages by developing
a computational formulation for consistent size-dependent couple
stress fluid dynamics and then by studying in detail lid-driven cav-
ity flows in two-dimensions.

The idea of couple-stresses was first introduced into a theory by
Cosserat and Cosserat [1] in continuum mechanics for solids.
Several decades later, Toupin [2], Mindlin and Tiersten [3], Koiter
[4], Mindlin [5], and Nowacki [6] expanded and generalized the
concept. Stokes [7,8] was the first to bring the idea into fluid
mechanics. However, the indeterminacy of the spherical part of
the couple-stress tensor and the appearance of the body couple
in the force-stress relations, both encountered by Mindlin and
Tiersten [3], made the formulation inconsistent. All of these diffi-
culties have been resolved recently by discovering the
skew-symmetric character of the couple-stress tensor [9,10]. As a
result, this fully self-consistent size-dependent couple stress the-
ory includes a characteristic material length l for the fluid that
becomes increasingly important as the characteristic geometric
dimension of the problem becomes comparable to that level.
Interestingly, in the energy equation corresponding to this consis-
tent couple stress theory, there is a couple-stress related term that
generates new mechanisms for energy dissipation in the flow.
Further details for this new consistent couple stress theory, along
with several applications can be found elsewhere [11].

The couple-stress effect makes the system of equations much
more complicated than the classical Navier–Stokes equations. As
a result, obtaining a general analytical solution is hardly possible.
On the other hand, for the case of couple stress creeping flow, an
integral representation for two-dimensional boundary value prob-
lems and the corresponding boundary element formulation have
been developed to obtain numerical solutions for size-dependent
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creeping flow [12]. However, development of boundary element
methods for the extension to non-linear flow problems is quite
challenging, even for a classical Navier–Stokes formulation [13].
Finite element methods (FEM) are quite suitable for non-linear
problems and also can easily model complicated geometrical
domains. The initial FEM formulation for the current couple stress
theory is mixed because it incorporates variational constraints to
reduce continuity requirements. The formulation artificially con-
siders the rotation field to be separate from the velocity field in
the underlying functional and then enforces rotation–velocity
compatibility via Lagrange multipliers. The corresponding FEM
has been developed recently for linear solid mechanics [14,15].
For general non-linear couple stress fluid problems, other more
convenient computational fluid dynamics (CFD) methods could
be applied. In order to explore the consequences of the couple
stress theory in fluids, the finite difference method is perhaps a
more appropriate approach, especially for initial studies in simple
geometries. Finite difference methods can handle non-linearity
and high order derivatives in a straightforward manner, and are
particularly well suited for rectangular domains, such as a square
cavity.

The lid-driven cavity problem is one of the most common
benchmark problems used to verify numerical methods for
two-dimensional incompressible flows. From the early works of
Kawaguti [16] and Burggraf [17], many researchers [18–22] have
studied the flow behavior and the stability of the steady state flow
for quite a wide range of Reynolds numbers. In general, these
investigations show that when the Reynolds number is high
enough, the flow becomes non-stationary, i.e., a stationary solution
no longer exists. The critical Reynolds number at which the insta-
bilities start to appear is reported to be within the range of 7500–
10,000 [19–22]. However, there are some studies that computed
the steady solution at even higher Reynolds numbers [23–26].
Grid refinement, artificial numerical dissipation, and order of accu-
racy of the numerical scheme are some causes for the discrepan-
cies in the critical value for the classical theory. Of course, there
is also the issue of whether a physical experiment for such
Reynolds numbers would maintain a two-dimensional flow pat-
tern [27]. We will not address that issue here and instead focus
on computational experiments confined to a two-dimensional
idealization.

In recent work, Chen et al. [28] and Asadi et al. [29] have exam-
ined the driven cavity problem within the framework of micropo-
lar theory, which includes the effects of couple-stresses. In both
papers, attention is focused on low Reynolds number flows with
Re ¼ 10 or less. Clearly, at such levels of Reynolds number in the
cavity, flow stability is not an issue. On the other hand, here we
employ consistent couple stress theory to investigate the stability
of the flow in the two-dimensional lid-driven cavity and examine
behavior for different levels of the couple-stress (or length scale)
parameter. Furthermore, in this size-dependent non-Newtonian
fluid mechanics, additional non-classical boundary conditions are
needed relating to rotational degrees of freedom. We consider
the two most basic cases, having either zero couple-traction or
zero vorticity specified on the boundary. As we shall see, the choice
has a dramatic influence on flow patterns and stability.

In the following section, we provide an overview of consistent
size-dependent couple stress fluid mechanics, and then in
Section 3, the governing equations for plane flow are specialized.
Next, we derive the formulation for the lid-driven cavity problem
in Section 4. This includes the introduction of the stream function
and the non-dimensional form of the governing equations. In
Section 5, we develop the numerical methodology and provide
details of the formulation for the cavity problem. Numerical results
are obtained in Section 6 to verify the formulation and to investi-
gate the effect of couple-stresses on the critical Reynolds numbers

at the threshold from stability to initially unstable modes of the
flow for both main types of the non-classical boundary conditions
noted above. The results are presented for different magnitudes of
the length scale parameter and Reynolds numbers. Finally,
Section 7 contains a summary and some general conclusions.

2. Couple stress theory for incompressible fluids

In classical fluid mechanics, a force vector represents the total
interaction among elements of the fluid. However, in
size-dependent fluid mechanics, an additional couple vector is
introduced, which accounts for the microstructure of the fluid.
This has a significant impact on character of the governing fluid
dynamics equations. As a result, within the framework of consis-
tent continuum fluid dynamics, couple-stresses appear as an inevi-
table consequence of internal interaction of constituents of the
fluid, which is associated with the discrete character of matter at
the finest scales. Thus, based on this theory, the force–stress tensor
is no longer assumed symmetric and the classical Navier–Stokes
equations cannot accurately predict the flow characteristics.
Thus, size-dependent theory may prove essential to understand
the behavior of fluids at micro-scales and to bridge between ato-
mistic and classical continuum theories.

The differential forms of the governing equations of motion for
the incompressible fluid in size-dependent couple stress theory are
given as [7,10].

Continuity equation:

v i;i ¼ 0 ð1Þ

Linear equation of motion:

Tji; j þ qbi ¼ q
Dv i

Dt
ð2Þ

Angular equation of motion:

Mji; j þ eijkTjk ¼ 0 ð3Þ

Here q is the constant mass density, v i is the velocity and bi is the
body force per unit mass in Cartesian coordinates, while eijk repre-
sents the permutation or Levi–Civita symbol. The tensors Tij and
Mij are the true force–stress tensor and pseudo couple-stress tensor,
respectively. Note that in this consistent couple stress theory, only
body forces are considered and body couples can be decomposed
into equivalent body forces and surface-tractions [9,10].

The force-traction vector tðnÞi and couple-traction vector mðnÞi act
through a surface element dS with outward directed unit normal
vector ni and are given by

tðnÞi ¼ Tjinj ð4Þ
mðnÞi ¼ Mjinj ð5Þ

Note that we use the same symbol mðnÞi to represent the
couple-traction (or moment-traction vector) and its resultant
moment.

In size-dependent theory, couple-stresses make the force–stress
tensor non-symmetric. More specifically, in consistent
size-dependent theory, the pseudo couple-stress tensor Mij is
skew-symmetric, i.e.

Mji ¼ �Mij ð6Þ

This makes the couple-traction vector mðnÞi tangent to the surface,
which then has only bending effects on the element surface. Due
to the skew-symmetry of the couple-stress tensor, a polar
couple-stress vector mi dual to the tensor Mij can be defined as

mi ¼
1
2
eijkMkj ð7Þ
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