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a b s t r a c t

The analytical solution of the start-up flow of a Bingham fluid between two co-axial cylinders is pre-
sented in this study. We focus on that all fluid is at rest initially, then a constant shear stress is exerted
by the inner cylinder while the outer remains stationary. The problem is solved using methods of Laplace
transform and numerical integration. The unsteady solutions of shear stress and angular velocity as well
as the motion of yielding surface are given. We also conduct the limiting analysis at infinitesimal values
of the time after initiation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

A Bingham-plastic [1] is a viscoplastic fluid characterized by
yield stress. Different from a Newtonian fluid, a Bingham plastic
flows like a fluid if the shear stress in the fluid is greater than yield
stress. But, it behaves like a solid if the shear stress is lower than
yield stress. For the simple Bingham constitutive relation, the dis-
continuity at zero strain-rate usually introduces difficulty for ana-
lytical or even numerical analysis. Therefore, the analytical
analysis of unsteady or even steady flow of a Bingham fluid in a
complex geometry has still been a challenging topic by now.

The circular Couette flow of a Bingham fluid has been quite
studied over decades, e.g., the steady flow under different forcings
[2–4], unsteady motion under different initial conditions or forc-
ings [5,6], the famous problem of Taylor–Couette stability [7–9],
and the start-up flow in a pipe or coaxial cylinders [10–12].
Recently, the start-up flow of a thixotropic Herschel–Bulkley fluid
in a Couette rheometer has been investigated using the inverse
finite element method [13], which is a practical numerical method
to calculate the time-dependent motion of yielding surface. Due to
the non-linear constitutive equation, most of the unsteady prob-
lems were solved with the help of numerical method except [12],

in which the Laplace transform method was applied to solve the
start-up flow problem. However, the solution may be ill-posed as
the time-dependent yielding surface was used as a boundary
condition (abbreviated as BC) for solving the free moving
boundary problem. But this methodology appears to be a potential
tool for analysis. Besides, all the researches above only focus on the
forcing of a rotation velocity at one boundary or a given pressure
gradient in axial direction, the wall shear stress has not been con-
sidered yet. Therefore, this study intends to propose an analytical
solution of the circular Couette start-up flow of a Bingham fluid
under a constant wall shear stress, which has not been discussed
yet so far.

In our problem, a Bingham fluid filled between two co-axial
cylinders is at rest initially. After initiation, the inner cylinder
rotates to exert a constant shear stress, and the outer remains sta-
tionary. The cylinders are assumed to be placed vertically and infi-
nitely long, so that end effect is neglected. In particular, we
reasonably assume the shear stress at the outer wall is finite and
less than yield stress. Taking advantage of the assumed BC, we
can apply Laplace transform method to solve our problem without
using the free moving BC of yielding surface. The unsteady shear
stress and velocity as well as the motion of yielding surface are
solved with the help of numerical methods of integration and root
finding. The unsteady solutions are validated with steady-state
one. We also discuss the evolution of shear layer thickness at
infinitesimal values of the time.
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2. Formulation

2.1. Governing equations and boundary conditions

As shown in Fig. 1, the two-dimensional cylindrical coordinate
system is used with r-axis and h-axis along the radial and angular
directions. The counterclockwise direction of h is defined to be pos-
itive. Since perpendicular to r; hð Þ-plane the gravitational effect is
not considered hereafter. The flow motion is assumed to be sym-
metric, so that all variables are independent of h. Due to the sta-
tionary outer cylinder, the radial velocity is zero in the gap.
Therefore, the simplified equation of momentum conservation in
h-direction reads
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where q is constant fluid density; uh is angular velocity; shr is shear
stress in h-direction along the radial axis. In our problem, the only
forcing is a constant shear stress in the counterclockwise direction
on the inner cylinder wall. The strain rate along radial direction
must be positive. Due to the viscous effect, as only the inner cylin-
der rotates, the flow has a maximum speed at the inner wall, and
remains stationary near the outer. Therefore, the direction of angu-
lar velocity must be in clockwise; namely, uh < 0. Thus, the consti-
tutive relation between shear stress and shear rate tensor [2] is
further simplified as

shr ¼ s0 þ lr
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where s0 and l are constant yield stress (unit: N=m2Þ and dynamic
viscosity (Pa s), respectively. Eq. (2) represents the constitutive rela-
tion for shear layer and Eq. (3) is for plug layer.

Due to the non-linearity of Bingham model, at the interface
between shear and plug layers, or called yielding surface, velocity
must be continuous but the slope of velocity profile may not be.
As the shear layer thickness is defined as d, the yielding surface
is located at r ¼ R1 þ d. Since this location of interface is also an
unknown, we need one extra condition at it. So that we impose
the BC that shear stress equals yield stress
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���� ¼ 0 and shrj j ¼ s0; at r ¼ R1 þ d; ð4a;bÞ

and velocity is continuous (but not the slope of velocity profile)

uhjplug layer ¼ uhjshear layer; at r ¼ R1 þ d; ð5Þ

where d 2 0;R2 � R1½ �. As the direction of shear stress is
counterclockwise, Eq. (4b) can be simplified as shr ¼ s0 at
r ¼ R1 þ d. The BC of a positive constant shear stress sw at the inner
wall is imposed

shr ¼ sw; at r ¼ R1; ð6Þ

and the no-slip BC at the outer wall as

uh ¼ 0; at r ¼ R2: ð7Þ

Besides, since the forcing is from the inner wall, the maximum val-
ues of shear stress shall exists on it. Hence, the shear stress at the
outer wall must be less than the forcing. Therefore, at the outer wall
an additional condition is imposed

shr < sw; at r ¼ R2: ð8Þ

2.2. Normalization

Non-dimensional variables are defined as follows

shr ¼ sws�hr ; uh ¼ swR1=lð Þu�h; t ¼ qR2
1=l

� �
t�; and r ¼ R1r�;

ð9Þ

where variables with asterisk represent the normalized one. Since
shear layer thickness d changes with time, it is also considered as
a variable. Normalized shear layer thickness is defined as

b ¼ d=R1 2 0;R2=R1 � 1½ �: ð10Þ

With Eq. (10) the normalized location of the yielding surface is

r� ¼ D ¼ 1þ b: ð11Þ

Two important normalized parameters are given by

a ¼ R2=R1 and B ¼ sw=s0: ð12Þ

The parameter a, called radius ratio, denotes the normalized loca-
tion of the outer cylinder. It also represents the ratio of radii of outer
to inner cylinders and a > 1. The parameter B, normalized
inner-cylinder wall shear stress, represents the ratio of shear stress
on the inner wall to yield stress. B must be greater than yield stress;
namely, B ¼ sw=s0 > 1, otherwise the fluid will remain stationary.

We use all normalized variables hereafter, and omit all asterisks
on them for clarification. With Eq. (9) the normalized momentum
equation becomes
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and the normalized constitutive relation are

shr ¼
1
B
þ r
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Finally, the normalized BCs are

shr ¼ 1; at r ¼ 1; ð16Þ

at the inner wall, and

uh ¼ 0 and shr < 1; at r ¼ a: ð17Þ

at the outer wall, and

Fig. 1. Definition sketch of two cylinders and the coordinate system. The clockwise
direction of h is defined as positive. The radii of the inner and outer cylinders are R1

and R2, respectively. A constant shear stress sw at the inner wall is exerted
counterclockwise after initiation, and the outer remains stationary.
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