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a b s t r a c t

A linear relationship between the shear viscosity and the total pressure, a constant single relaxation time
for a Maxwell-type viscoelastic fluid, and a unidirectional velocity profile are the major assumptions
made in the present work in order to study the steady-state isothermal and pressure-driven flows in
straight channels and circular tubes. Despite their non-linearity the final partial differential equations
that govern the flows are solved analytically, and the dependence of all the primary flow variables on
the geometrical aspect ratio, the dimensionless pressure-viscosity coefficient and the Weissenberg num-
ber is revealed explicitly. It is demonstrated that the pressure-dependent viscosity slightly affects the
velocity profile, changes substantially the pressure gradient along the main flow direction, generates
another normal to the wall, and it is responsible for significant variations of the extra-stresses along both
spatial directions. An exponential increase of the viscosity, relative to its reference value, is predicted as
the distance from the exit of the channel/tube increases. As a consequence, the average pressure differ-
ence, required to drive the flow and the shear stress at the wall increase substantially compared to that
predicted by the classic Hagen–Poiseuille law. Last, it is revealed that the solution of the governing equa-
tions ceases to exist when the Weissenberg number reaches a threshold.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

As a first approximation, the shear viscosity, g�, for a big variety
of liquids is assumed constant. In general however, it depends on
the flow conditions and in particular on the shear-rate, the pres-
sure, and, for non-isothermal problems, strongly on the tempera-
ture. The effect of the pressure on the viscosity becomes
important at a pressure 50 atm approximately [1], while for pres-
sures of the order of 1000 atm the viscosity appears to increase
more than an order of magnitude [2,3]. Applications which involve
a high pressure difference and/or a large pressure range include
polymer processing operations such as extrusion and injection
molding [1,4–6], food processing, pharmaceutical tablet manufac-
turing, crude oil and fuel oil pumping [7], fluid film lubrication
[8], journal bearing applications [9], microfluidics [10] and geo-
physics [11]. In order to avoid major errors when modeling these
types of processes the dependence of the viscosity on the pressure
must be taken into account.

Stokes [12] was the first to introduce the concept of the
pressure-dependent shear viscosity, and indeed early experiments
by Barus [13,14], later by Bridgman [15] and Griest et al. [16], and
more recently by Iqbal and Hasmi [17], Bair et al. [18], Bair and

Kottke [19], Pruša et al. [20] and others have clearly demonstrated
the increase of the viscosity with the increase in pressure p�.
Experimental methods and techniques for measuring the shear vis-
cosity versus pressure can be found in many papers in the litera-
ture such as those by Kadijk and Van Den Brule [5], Binding et al.
[21], Goubert et al. [22], Park et al. [23] and Schaschke [24].

As far as the dependence of the viscosity on the pressure is con-
cerned, it appears that a relationship between g� and p� which can
describe adequately all the available experimental data does not
exist. Indeed, at low to medium pressure differences a linear law,
first proposed by Barus [13,14], is suitable and often used by many
researches:

g� ¼ g�0 1þ b�ðp� � p�ref Þ
h i

ð1Þ

where b� is the constant pressure-viscosity coefficient, and g�0 is the
shear viscosity at the reference pressure p�ref ; throughout the text a
superscript ⁄ denotes a dimensional quantity. At large pressure dif-
ferences an exponential law appears to fit the data pretty well,
while for huge pressure differences the increase is even larger than
exponential [18,19]. For details on the empirical relationships
g� ¼ g�ðp�Þ the interesting reader is referred to the works of Bair
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and Kottke [19], Huilgol and You [25], Málek and Rajagopal [26] and
Hron et al. [27].

Regarding the modeling of fluids with pressure-dependent vis-
cosity, a major problem should be reported. In particular, with
some laws which appear to describe the experimental data well
(for a specific range of the pressure) such as the exponential law,
it is very difficult to solve the governing equations analytically or
even numerically [28]. An approximate analytical solution for the
adiabatic capillary flow of a fluid with pressure- and
temperature-dependent viscosity using the exponential law, has
been derived by Denn [29], however in many cases the correspond-
ing governing equations do not have a solution even for simple
flows, such as steady-state pressure driven and Couette type flows,
or a solution cannot be found [25,27].

Typical values for b� are 10–50 GPa�1 for polymer melts
[1,5,6,30–32], 10–70 GPa�1 for lubricants [18,33] and
10–20 GPa�1 for mineral oils [34]. These values for b� are usually
reported for the exponential law; however, they are also valid for
small or medium pressure differences p� � p�ref .

The pressure-dependence of the viscosity in lubrication [8], vis-
cometric and other flows has been analyzed mathematically by
various investigators [2,27,35–37]. Numerical simulations for gen-
eralized shear-thinning Newtonian liquids have been performed by
Lanzendörfer [28], Lanzendörfer and Stebel [38] and Hirn et al.
[39]. Asymptotic solutions of weakly compressible Newtonian
Poiseuille flows with pressure dependent viscosity have been
derived by Poyiadji et al. [40], while the effect of the
pressure-dependent viscosity for the unbounded flow past a
sphere has been studied by Housiadas et al. [41].

However, studies for viscoelastic liquids with
pressure-dependent viscosity are absent from the literature with
the exception of the works by Karra et al. [42] and Housiadas
[43]. In particular, Karra et al. [42] studied the transient unidirec-
tional flow between a stationary and an oscillatory plate using
the Maxwell constitutive model [44] and assuming that the shear
viscosity and the relaxation time vary both linearly, or both expo-
nentially, with pressure. Their results showed a few interesting
phenomena associated with the pressure-dependent viscosity
and relaxation time of the fluid. Housiadas [43] used the exponen-
tial law along with an exponential dependence of the relaxation
time on the pressure and utilized asymptotic techniques in order
to find the solution of the relevant non-linear governing equations
(see more comments below).

In the present work, Eq. (1) is used in conjunction with the
Maxwell constitutive model for the description of the viscoelastic
response of the fluid under deformation (typically a polymer melt),
in order to study the steady-state isothermal and pressure-driven
flows in channels/slits and circular tubes. Eq. (1) is valid for all flu-
ids for sufficient small values of b�ðp� � p�ref Þ and therefore it can be
used to reveal the lower limit effect of the pressure-dependent vis-
cosity on the flow field. As far as the single relaxation time of the
fluid, k�, is concerned, it is known that k� is given as the ratio of
the shear viscosity to the shear modulus. However, the dependence
of k� on p� is not clear and, surprisingly, experimental data for k�

versus p� do not exist in the literature (at least as far as the author
this work is aware). Handge and Altstadt [32] have suggested that
if the time-temperature–pressure superposition principle is ful-
filled, which appears to be the case for the polystyrene melts that
they report on, then all relaxation times must scale with the same
factor as the viscosity. In the present paper however k� is assumed
to be constant; as shown in Ref. [43] this assumption does not
qualitatively affect the results. Although the linear
pressure-dependent viscosity and constant relaxation time are
major assumptions, they allow solving analytically the non-linear
two-dimensional governing equations for the pressure-driven

flows mentioned above, reveal interesting observations, and high-
light a few problems with the modeling of flows with the
pressure-dependent viscosity such as the loss of existence of solu-
tion at high Weissenberg numbers.

Finally, the differences between this work and that by
Housiadas [43] should be explicitly stated. Here, the shear viscosity
of the fluid depends linearly on the pressure, the relaxation time is
constant and unidirectional flow is assumed, i.e. wall-normal
motion of the fluid is not allowed. The solutions of the final
non-linear partial differential equations that govern the flow prob-
lems are exact; hence they hold for arbitrary values of the dimen-
sionless number and parameters which appear in the equations. In
Ref. [43], the shear viscosity and the relaxation time depend expo-
nentially on the pressure, the velocity profile depends on both the
axial and the wall-normal directions, and the solutions have been
found up to sixth order using perturbation methods with small
parameter the dimensionless pressure-viscosity coefficient; this
implies that the solutions reported in Ref. [43] are valid for small
values of the dimensionless numbers and parameters. Even if
special care on the accuracy and convergence of the asymptotic
solutions was given, uncertainties which concern with the range
of the parameters for which the solution is valid always exist with
asymptotic methods.

The rest of the present paper is composed of four sections. In
Section 2, the problem formulation, assumptions, governing equa-
tions and accompanying boundary conditions are stated. In
Section 3, the analytical solutions for both geometrical flow config-
urations (in straight channels/slits and in circular tubes) are pro-
vided. Results and discussion are given in Section 4, and
concluding remarks, in Section 5, finalize the paper.

2. Governing equations

The isothermal, steady, and pressure-driven flows of an incom-
pressible viscoelastic fluid with constant mass density q�, in two
different geometries, a straight channel (or slit) of length L� and
height 2R�, and a circular tube of length L� and constant radius
R�, are considered (see Fig. 1). In absence of external forces,
neglecting gravity and taking into account that for slow flows of
highly viscous polymer melts inertia is negligible, the mass and
momentum equations are:

r� � v� ¼ 0 ð2Þ

�r�p� þ r� � s� ¼ 0 ð3Þ

In Eqs. (2) and (3), v� ¼ ezv�z þ erv�r is the velocity vector, with ez; er

being the unit vectors, p� is the total pressure, and s� is the polymer

Fig. 1. Geometrical flow configurations and coordinate systems; top: flow between
two parallel walls, bottom: flow in a straight tube.
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