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a b s t r a c t

We study pressure-driven channel flow of a simple viscoelastic fluid whose elastic modulus and relax-
ation time are both power-law functions of shear-rate. We find that a known linear instability for the case
of constant elastic modulus (Wilson and Rallison, 1999) persists and indeed becomes more dangerous
when the elastic modulus is allowed to vary. The most unstable scenario is a highly shear-thinning relax-
ation time with a slightly shear-thinning elastic modulus, and typical unstable perturbations have a
wavelength comparable with the channel width. Inertia is mildly destabilising.

We compare with microchannel experiments (Bodiguel et al., 2015), and find qualitative agreement on
the critical flow rate for instability; however, because of the artificial nature of the power-law viscosity,
we have excluded the sinuous modes of instability which are seen in experiment.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

It is well known [3] that viscoelastic fluids can exhibit instabil-
ities not seen in their Newtonian counterparts. Where such an
instability persists in the absence of inertia, it is termed an elastic
instability.

Perhaps the most well-understood elastic instability is the
curved streamline instability discovered by Larson et al. [4] and elu-
cidated by Pakdel and McKinley [5]. Here the first normal stress
difference interacts with curvature of the streamlines to drive an
instability.

Another broad category of elastic instabilities is interfacial insta-
bilities. A jump in material properties across an interface can trig-
ger instability of the interface: either through a long-wave
mechanism based on the tilting of the interface [6] or in some cases
[7] by a mechanism that remains obscure (and persists even when
surface tension holds the interface flat) but nonetheless depends
critically on the presence of the interface.

A third category is shear-banding instabilities: a fluid whose con-
stitutive curve is non-monotonic may spontaneously form bands of
different shear stress (in a rate-controlled scenario) or different
shear rate (in a stress-controlled scenario) [8]. This seemingly
unphysical behaviour does seem to occur for real physical systems
[9] and has been the focus of much recent work [10].

However, recently published experiments by Bodiguel et al. [2]
have found evidence of an elastic instability, occurring at a

reproducible critical flow rate, in a flow having neither curved
streamlines, nor an interface, nor any evidence of shear-banding.
There is, to our knowledge, only one theoretical prediction of such
an instability, in a study by Wilson and Rallison [1]. In this paper
we extend that analysis to a constitutive model which can match
the rheometry of the fluid used in experiments. We find an insta-
bility whose critical flowrate is reasonably close to that seen in
the experiments; but there are limitations to our model.

In Section 2 we introduce our constitutive model and show its
behaviour in simple shear flow; in Section 3 we carry out a linear
stability analysis for channel flow of this new fluid. In Section 4 we
present the results of our study, including the dependence of the
instability on fluid parameters, on inertia and on perturbation
wavenumber. In Section 5 we make a detailed comparison with
the experimental results published in [2]; finally in Section 6 we
draw our overall conclusions.

2. Model fluid

Our model fluid is chosen with three principles in mind. It needs
to match the rheometry of the experiments we wish to replicate
[2]; some limit of it needs to match the existing theory [1]; and
it is desirable for it to have at least a semi-physical microscopic
derivation.

In the experiments, the fluid is highly shear-thinning. The
rheometry shows that both the viscosity and first normal stress
difference are reasonably well fit with a simple power law over a
good range of shear rates. Thus we need a viscoelastic model
whose parameters can vary with shear rate.
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Our previous theory [1] used a special case of the White–
Metzner model whose relaxation time had power-law dependence
on shear rate but whose modulus was independent of flow. We
need to extend this fluid to allow a wider range of rheology in
the fluid.

All White–Metzner style models are simply phenomenological
extensions of the UCM model; UCM, on the other hand, does have
a physical derivation as the polymer stress contribution of a dilute
solution of Hookean dumbbells (see, for example [11]). The model
we will use in this paper comes from a semi-physical extension of
the UCM derivation, which is to allow the spring constant and the
solvent viscosity to vary with the background shear rate (but with-
out a kinetic theory to explain the behaviour of these two param-
eters). The derivation produces the following constitutive equation
for the extra-stress tensor s:

s ¼ Gð _cÞA A
r
¼ � 1

kð _cÞ ðA� IÞ ð1Þ

in which the rheological functions G (shear modulus) and k (relax-

ation time) depend on the instantaneous shear rate _c, and A
r

is the
upper-convected derivative, defined below in Eq. (6).

This is not equivalent to the standard White–Metzner model,
which is given by the following equation:

sþ kð _cÞ s
r
¼ gð _cÞðruþru>Þ

in which gð _cÞ is the shear-rate dependent viscosity and u the fluid
velocity; however, in the special case gð _cÞ ¼ Gkð _cÞ for constant G,
the two models both reduce to the form considered in [1].

2.1. Governing equations

The full governing equations for our incompressible fluid (in the
absence of external body forces such as gravity) are:

r � u ¼ 0 ð2Þ

q
@u
@t
þ u � ru

� �
¼ r � r ð3Þ

r ¼ �pI þ GA ð4Þ

A
r
¼ �1

k
ðA� IÞ ð5Þ

A
r
� @

@t
Aþ u � rA� ðruÞ> � A� A � ru: ð6Þ

Here u is the fluid velocity, q its density, r the total stress tensor, p
pressure, A the conformation tensor, G the elastic modulus and k the
relaxation time. I is the identity tensor (or unit matrix).

The parameters k and G depend on the shear rate _c, defined as
an invariant of the rate-of-strain tensor E as follows:

_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2E : E

q
where E ¼ 1

2
ðruþru>Þ: ð7Þ

2.2. Rheometry

We use cartesian coordinates ðx; yÞ. In a simple steady shear
flow u ¼ _cyex the fluid stress is

r ¼ �p0 þ Gþ 2Gk2 _c2 Gk _c
Gk _c �p0 þ G

 !
;

which gives the two viscometric functions:

g � r12

_c
¼ Gk W1 �

r11 � r22

_c2 ¼ 2Gk2:

As we will see in Section 5, for the fluid used in the experiments
it is reasonable, over a range of shear rates, to approximate both g
and W1 with power-law functions of _c of the form A _cn. This allows
us to restrict our model to power-law behaviour for the functions
Gð _cÞ and kð _cÞ:
G ¼ GM _cm�n k ¼ KM _cn�1 ð8Þ
where the indices m and n are chosen so that the definition of k
matches that used in [1], and the shear stress has the simple scaling

r12 � GMKM _cm:

3. Stability theory

We now consider two-dimensional channel flow of a fluid sat-
isfying Eqs. (2)–(7) along with the scaling laws of Eq. (8). The chan-
nel, of infinite extent in the x-direction, has half-height L (in the
y-direction) and the flow is driven by a pressure gradient P in
the x-direction.

3.1. Steady channel flow

If we assume a steady, unidirectional flow profile u ¼ UðyÞex,
satisfying a no-slip condition at y ¼ �L, we obtain the following
solution:

UðyÞ ¼ P

GMKM

� �1=m m
mþ 1

� �
ðLðmþ1Þ=m � jyjðmþ1Þ=mÞ ð9Þ

_c ¼ jU0j ¼ Pjyj
GMKM

� �1=m

: ð10Þ

3.2. Dimensionless form

We now convert to dimensionless quantities. Introducing U0 to
denote the centreline velocity, we scale lengths with L, the channel
half-width; times with the average shear rate U0=L; and stresses
with a typical shear stress, which is the fluid shear stress r12 at
the average shear rate: GMKMðU0=LÞm.

Denoting scaled quantities with a tilde, our new governing
equations become:

r � ~u ¼ 0 Re
@~u
@t
þ eu � r~u

� �
¼ r � ~r ð11Þ

~r ¼ �~pI þ C
W

A A
r
¼ � 1

W
ðA� IÞ ð12Þ

along with the definitions of A
r

and _c which are unchanged (save for
the addition of tildes) from their original form in Eqs. (6) and (7).
(Note that A was dimensionless in the original equations and has
not been scaled.)

We have introduced the Reynolds number (based on the shear
viscosity at the average shear rate)

Re ¼ qU0L

GMKMðU0=LÞm�1 ð13Þ

and the new viscometric functions
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