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a b s t r a c t

An essential closure of hydraulic fracturing models is the solution of the momentum equation for flow
between plane parallel walls. Newtonian or simple power-law rheology is usually assumed. In real
treatments, fracturing fluid often has more complicated rheology, such as Carreau. An earlier introduced
modification to the power-law model enables a fair approximation to Carreau rheology. Unlike Carreau, it
also enables a closed-form solution for the flow rate between plane parallel walls. The computational cost
is, however, considerably smaller than with Carreau. Closed-form solution for the flow rate versus
pressure gradient is obtained which is useful in hydraulic fracturing simulations. Compared to simple
power-law model, the truncated power-law model improves accuracy of flow computations in
small-aperture and large-aperture parts of the fracture, thereby improving the overall accuracy of
hydraulic fracturing simulation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hydraulic fracturing is one of the most popular well stimulation
techniques in oil and gas industry. A fracture is created by injecting
fluids or fluid–solids mixtures from a well into the surrounding
rock. The permeability of the resulting fracture is typically orders
of magnitude higher than that of the rock, which means that the
fracture can act as a high-conductivity conduit from the reservoir
towards the producing well. The success of the stimulation job
depends on our ability to predict fracture growth and its final size
by numerical modelling when designing the treatment [1]. Such
modelling is only possible if the fluid flow in the growing fracture
is predicted correctly.

Typically, non-Newtonian power-law fluids are used for
hydraulic fracturing in conventional oil and gas reservoirs [2–6].
Fluid flow in the fracture at low Reynolds numbers is usually com-
puted using the so-called lubrication theory approximation,
whereby it is assumed that the fracture roughness is relatively
small so that the flow can locally be approximated as flow between
plane parallel walls [7–9]. The analytical solution of the momen-
tum equation for the latter is then fed into the mass conservation
equation for flow in the fracture, thereby eliminating one spatial
dimension from the problem, i.e. the dimension along the fracture

aperture. It should be noted, however, that this approach is compu-
tationally efficient only if a closed-form solution for flow between
plane parallel walls is available. Therefore, the pure power-law
model (Ostwald – de Waele model) has been routinely used in
hydraulic fracturing simulators [3,10], with the apparent dynamic
viscosity given by:

ga ¼ C _cn�1 ð1Þ

In Eq. (1) C is the consistency index; n is the flow behaviour index; _c
is the shear rate, _c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D
p

, where D is the strain rate tensor.
It has been pointed out by Shah and Yortsos [11] that the

simple, two-parameter pure power-law model represented by
Eq. (1) cannot correctly describe the behaviour of real fluids at
low and high shear rates. In particular, for shear-thinning fluids,
Eq. (1) implies that the apparent viscosity increases towards infin-
ity as _c! 0, and decreases towards zero as _c!1. The importance
of including both low shear rate and high shear rate cutoff viscosi-
ties into the rheological model of fracturing fluids has been empha-
sized e.g. by Oeth et al. [12]. Four-parameter models, such as
Carreau or Cross models, represent more accurate descriptions of
power-law fluid behaviour at high and low shear rates by introduc-
ing asymptotic values of the apparent viscosity at those limits.
However, these models do not allow a closed-form solution for
the flow between parallel walls. As a result, obtaining the flow rate
as a function of the pressure gradient with these models would
require a numerical integration along the conduit aperture in each
grid point on the fracture surface. Such quadrature would require
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at least 5–6 integration points along half-aperture, in order to
ensure sufficient accuracy. This is illustrated by a numerical exam-
ple in Fig. 1 where the flow rate obtained by trapezoidal integra-
tion of the velocity profile is shown as a function of the number
of integration points along the aperture. For Carreau or Cross rhe-
ologies, a nonlinear algebraic equation needs to be solved at each
of these integration points by e.g. Newton’s method to obtain the
shear rate. This involves evaluation of power functions at each step
of Newton’s iteration. The use of the quadrature entails therefore a
significant computational cost. For this reason, notwithstanding
their improved accuracy, Carreau and Cross models have not been
used in routine hydraulic fracturing simulations.

An improvement on the currently widely used pure power-law
fluid model can be achieved by a well-known modification, namely
by using cut-off viscosities at low and high shear rates (Section 2).
Even though such modification is trivial, the behaviour of such
fluid can be made to resemble Carreau or Cross fluids fairly well
while the problem of flow between plane parallel walls remains
analytically tractable. The closed-form solution for flow between
plane parallel walls of such fluid is obtained in Section 3. The
closed-form expression for the flow rate as a function of pressure
gradient includes only one extra term. The computational over-
head while using this model in hydraulic fracturing simulation is
expected to be well justified by the improved accuracy of
modelling the fluid behaviour.

2. Truncated power-law fluid

As mentioned in Section 1, an improvement on the pure
power-law rheology can be achieved by using a four-parameter
model, e.g. the Carreau fluid with the apparent viscosity repre-
sented by [13,14]:

ga ¼ g1 þ g0 � g1ð Þ 1þ ðk _cÞ2
� �n�1

2 ð2Þ

where g0 is the viscosity at zero shear rate; g1 is the limiting vis-
cosity as _c!1; n and k are fitting parameters. An example of
the apparent viscosity vs shear rate curve in log–log coordinates
for a shear-thinning Carreau fluid is given in Fig. 2 (dotted line),
with the values of g0, g1, n and k given in Table 1.

The Carreau model describes many real fluids quite well, but
cannot readily be used in a fracture flow simulation since it is

not possible to obtain a closed-form solution for the
Poiseuille-type flow between plane parallel walls with this model.
A simple regularization of the pure power-law model described in
[15] allows capturing basic features of the Carreau model, while at
the same time enabling analytical treatment of the plane parallel
wall flow problem, with a closed-form solution at the end of the
road.

The truncated power-law model is constructed as follows [13]:

ga ¼
g0 for _c < _c1

C _cn�1 for _c1 < _c < _c2

g1 for _c > _c2

8><
>: ð3Þ

where _c1 ¼ ðC=g0Þ
1=ð1�nÞ is the shear rate at which the low-viscosity

cut-off is introduced; _c2 ¼ ðC=g1Þ
1=ð1�nÞ is the shear rate at which

the high-viscosity cut-off is introduced. The model represented by
Eq. (3) has four parameters, similar to the Carreau model.

The truncated power-law model is illustrated in Fig. 2 (solid
line), with the model parameters specified in Table 1. It is identical
to a pure power-law model within the interval _c1 < _c < _c2. The
pure, two-parameter power-law model is also shown in Fig. 2
(dashed line).

3. Laminar flow between plane parallel walls

Our objective is to derive the solution to the problem of flow
between parallel walls for the truncated power-law fluid described
in Section 2. The geometry of the problem is shown in Fig. 3. The
x-axis is directed along the centre line of the conduit, in the
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Fig. 1. Flow rate in a plane-wall conduit estimated by quadrature as a function of
the number of integration points along half-aperture for Carreau fluid. Conduit
aperture w = 1 mm. Conduit length in the direction perpendicular to flow is 1 m.
Parameters of the Carreau fluid: low shear rate viscosity 0.5 Pa s; high shear rate
viscosity 0.001 Pa s; exponent 0.25 (shear thinning); k = 600 s [see Eq. (2) for a
definition of Carreau fluid properties]. Two curves correspond to two values of the
pressure gradient applied in the direction of flow.
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Fig. 2. Apparent viscosity vs shear rate for three rheological models. The values of
model parameters are listed in Table 1.

Table 1
Parameters of the shear stress vs shear rate curves plotted in Fig. 2.

Rheological model Parameter Value

Carreau (dotted line in Fig. 2) g0, Pa s 0.5
g1, Pa s 0.001
n 0.25
k, s 600.0

Truncated power-law (solid line in Fig. 2) g0, Pa s 0.5
g1, Pa s 0.001
n 0.3
C, Pa s2�n 0.005

Pure power-law (dashed line in Fig. 2) n 0.3
C, Pa s2�n 0.005
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