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a b s t r a c t

The local asymptotic behaviour at the stick-slip singularity is determined for the Giesekus fluid in the
presence of a solvent viscosity. In planar steady flow, the method of matched asymptotic expansions is
used to show that it comprises a three region structure. Specifically, an outer or core region that links
boundary layers at the rigid stick and free slip surfaces. In the outer region, the velocity field is shown
to be Newtonian at leading order, with solvent stresses dominating the polymer stresses. In terms of
the radial distance r from the singularity at the join of the stick and slip surfaces, the velocity field
vanishes as Oðr1

2Þ. Consequently, the singular velocity gradients and solvent stresses are of Oðr�1
2Þ with

the less singular polymer stresses being shown to be Oðr� 5
16Þ. The solvent and polymer stresses become

comparable near the rigid stick and free slip surfaces, where boundary layers are required. These are
of thickness Oðr5

4Þ at the rigid stick surface and thickness Oðr17
14Þ at the free slip surface. Solutions are

constructed for both stick-slip and slip-stick flow regimes. These asymptotic results do not hold for
the Oldroyd-B model nor for the case when the solvent viscosity is absent.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The extrusion of a viscoelastic jet from a die into an inviscid
medium is an important situation occurring in polymer processing
applications; see, for example, Tanner [33]. It is commonly referred
to as the die-swell or extrudate-swell problem. The die may be a
cylindrical pipe or a planar channel. Two characteristics of the
die-swell problem are the expansion of the jet and the presence
of a stress singularity at the exit of the die. The swelling of the
extrudate for a viscoelastic fluid can be significantly more than that
in the Newtonian case, see Tanner [32]. The presence of the stress
singularity arises from the abrupt change in boundary conditions
at the die exit. Its determination is crucial for understanding the
extrudate-swell phenomenon as discussed by, for example, Andre
and Clermont [1] and Tanner [32,34].

A simplified version of the die-swell problem is the so called
stick-slip problem. Here the free surface is now fixed as a smooth
continuation of the die wall with the swelling effect suppressed.
Tanner and Huang [35] describe its possible setup through consid-
eration of a repeating pattern of equally spaced channel walls. It is
a situation in which the stress singularity at the die lip can be
investigated and may be regarded as a first step toward under-
standing the more involved die-swell problem. It is emphasised
that the term stick-slip is used here in regard to the change in

the boundary conditions as the fluid leaves the pipe/channel and
not to experimentally observed spurt flow with the extrudate
exhibiting alternate smooth and sharskin regions, see, for example
Denn [5].

In the Newtonian case, the stick-slip problem for Stokes flow
(absence of inertia) was completely solved by Richardson [27] in
the planar case and Trogdon and Joseph [36] in the 3-d axisymmet-
ric case. For Newtonian fluids it may be considered to arise in the
limit of large surface tension. Both sets of authors exploited the
problem linearity and strip geometry by using the Weiner–Hopf
technique, with in addition Trogdon and Joseph showing consis-
tency with a matched eigenfunction expansion approach. The more
general die-swell problem for a Newtonian fluid, has been consid-
ered analytically by Solonnikov [31].

For viscoelastic fluids, there is a paucity of analytical results and
the question of well-posedness for these problems is an open issue.
Further, numerical simulation tends to be problematic, see for
example Lipscombe et al. [20] and Fortin et al. [10] for difficulties
encountered in earlier numerical work. This has been attributed to
the highly singular stresses encountered. Consequently both
numerical and analytical work near the singularity has seen either
the modification of the viscoelastic constitutive equations or the
introduction of slip on the die walls. For example, Apelian et al.
[2] and King et al. [18] use the Modified UCM model in place of
UCM or Oldroyd-B models, whilst slip on the die walls has been
used by Salamon et al. [28] for the Oldroyd-B model (and Silliman
and Scriven [30] for a Newtonian fluid). A comprehensive summary
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of the schemes and viscoelastic models simulated for stick-slip and
die-swell can be found in Ngamaramvaranggul and Webster [24]
and more recently in Karapetsas and Tsamopoulos [16,17]. Analyt-
ically, Tanner and Huang [35] used an adaption of the J-integral
approach from fracture mechanics to deduce that the singularity
behaviour for Phan-Thien–Tanner (PTT), Modified Upper Con-
vected Maxwell Model (MUCM) and general network models were
of Newtonian form. Nothing definitive could be said for UCM and
Oldroyd-B flows. (The approach usefully allowed the singularity
intensity factors to be deduced for Newtonian and generalised
Newtonian (particularly power law) fluids). Fontelos and Friedman
[9] obtained existence and uniqueness results for a class of Oldroyd
models (that do not include the B and A variants) in stick-slip.

Our focus here will be determining the stress singularity at the
die exit for stick-slip flow of the Giesekus viscoelastic model. The
Giesekus model [12,13], is a class of constitutive equations based
on anisotropic drag and the concept of a deformation dependent
tensorial mobility of dissolved molecules. It describes how the
relaxation time of a molecule (elastic dumbbell) is altered when
the surrounding molecules (elastic dumbbells) are oriented. The
relaxation behaviour becomes anisotropic and results in an addi-
tional quadratic term of the stress tensor compared to the Maxwell
model. A better description of polymeric solutions and melts is
obtained, than for some other rheological models such as the
Oldroyd-B model or corotational model. It enables a qualitative
description of a number of well-known properties of viscoelastic
fluids, namely shear thinning, non-zero second normal stress coef-
ficient and stress overshoot in transient shear flows; see Giesekus
[14], Larson [19] and Bris et al. [4].

Currently, the Giesekus model has not received attention within
such an analytical study. The approach will use the method of
matched asymptotic expansions that was successfully use by Evans
[8] for the affine PTT model. It may be anticipated that its
behaviour should be similar to the PTT model, since both involve
quadratic stress terms. The main results of the paper will show that
on small radial distances r near to the singularity:

1. The stress field is Newtonian dominated. Away from the stick
and slip surfaces, the solvent stresses thus dominate and are
Oðr�1

2Þ whilst the polymer stresses are Oðr� 5
16Þ (which compare

to Oðr� 4
11Þ for PTT).

2. A boundary layer of thickness Oðr5
4Þ is required at the stick sur-

face to accommodate viscometric flow. This thickness should be
compared with Oðr7

6Þ for PTT.
3. A boundary layer of thickness Oðr17

14Þ is required at the slip sur-
face to arrest elongational growth of the stresses. This thickness
compares with Oðr23

20Þ for PTT.

Thus the polymer stress is less singular than that obtained for
PTT, but the boundary layers are correspondingly narrower than
their PTT counterparts. This is a trend that was identified for the
high Weissenberg number boundary layers of Hagen and Renardy
[15] and re-entrant corner behaviour discussed in Evans [6,7]. Cru-
cial to these results is the presence of a solvent viscosity and the
quadratic stress terms. The solvent viscosity has a regularizing
effect on the model behaviour, with the polymer stresses being less
singular than the solvent stresses. The presence of the quadratic
stress terms arrest the strong stress growth that occurs in elonga-
tional flow after the die exit. The loss of either of these effects from
the model is sufficient to significantly change the asymptotic
behaviour at the singularity, which currently remains unknown
in these limits of the model.

The advantages of determining the stress singularity are sev-
eral. First it is a test of the rheology, to see how the constitutive
equations behave under large stresses. Second, the form of the

singularity is of use to numerical schemes, where it’s behaviour
can be incorporated to improve accuracy. This is particularly
important for viscoelastic models which have strong hyperbolic
properties that tend to propagate inaccuracies along streamlines.
This has successfully been done for Newtonian fluids, where Geor-
giou et al. [11] introduced singular finite elements in the vicinity of
the singularity to improve the solution accuracy and speed up the
rate of convergence. However, this approach relies upon knowing
the analytical form of the singularity. Thirdly, it adds to a catalogue
of reference behaviours.

The problem formulation is introduced in Section 2, where the
governing equations, boundary conditions and their non-dimen-
sionalisation is detailed. The details of the asymptotic analysis
are then given in Section 3. The analysis is performed in both the
Cartesian and natural stress formulations of the constitutive equa-
tions. The most efficient approach for the analysis is using natural
stress variables, where the link between solutions in the asymp-
totic regions occurs at leading order. However, performing the
analysis in Cartesian variables is useful as it provides a consistency
check on the natural stress results and is arguably easier to inter-
pret physically particularly near the boundaries. However, it does
suffer from requiring higher order terms in the outer expansions
to communicate the correct stress information between the stick
and slip surfaces. It is thus advantageous to record the details for
both formulations. Finally in Section 4 a summary of the results
in dimensional form is given.

2. Problem formulation

The geometry for classical stick-slip flow is depicted in Fig. 1 for
the planar channel case. The channel width is taken as 2H, with an
assumed incoming plane Poiseuille flow far upstream with mean
speed V. The fluid exits the channel at x ¼ 0, far downstream of
which it has a fully developed (shear-free) plug flow. If we take the
speed of the plug flow as V, then the Poiseuille flow takes the form

v ¼ 3V
y
H

1� y
2H

� �
;0

� �
ð2:1Þ

which follows from mass conservation through a flux balance for
the two flows. The reverse flow set-up of slip-stick will also be con-
sidered. This being more for mathematical interest rather than
practical.

The governing equations for steady incompressible planar flow
of the Giesekus fluid are written in dimensional slow flow form

r � v ¼ 0; 0 ¼ �r pþr � s; ð2:2Þ

where v ¼ ðu;vÞT is the velocity field (represented by the usual 2-D
stream function w) and p the pressure. The extra stress tensor
s ¼ ss þ sp consists of a Newtonian solvent contribution ss and an
elastic polymeric contribution sp. The solvent stress is given by

ss ¼ 2gsD; ð2:3Þ

where gs is the solvent viscosity and D is the rate of strain (or defor-
mation rate) tensor given by

D ¼ 1
2
ðrv þ ðrvÞTÞ: ð2:4Þ

The extra elastic stress tensor sp is taken to satisfy the Giesekus
constitutive equation

sp þ k sp
5
þamob

gp
ðspÞ2

 !
¼ 2gpD; ð2:5Þ

where k is the stress relaxation time, amob is the mobility parameter
of the model, gp the polymer viscosity and the upper convected
derivative of the elastic stress being
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