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a b s t r a c t

The boundary-layer flow due to a rotating disk is considered for a number of generalised Newtonian fluid
models. In the limit of large Reynolds number the flow inside the three-dimensional boundary-layer is
determined via a similarity solution. Results for power-law and Bingham plastic fluids agree with
previous investigations. We present solutions for fluids that adhere to the Carreau viscosity model. It
is well known that unlike the power-law and Bingham models the Carreau model is applicable for
vanishingly small, and infinitely large shear rates, as such we suggest these results provide a more
accurate description of non-Newtonian rotating disk flow.
� 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

The steady incompressible flow induced by the rotation of an
infinite plane with uniform angular velocity is an exact solution
of the Navier–Stokes equations, as was first described by von
Kármán [1]. The flow is characterised by the lack of a radial pres-
sure gradient near to the disk to balance the centrifugal forces so
the fluid spirals outwards. The disk acts as a centrifugal fan, the
fluid emanating from the disk being replaced by an axial flow
directed back towards the surface of the disk.

Batchelor [2] showed that this type of flow is in fact just a limit-
ing case of a whole number of flows with similarity solutions in
which both the infinite plane and the fluid at infinity rotate with
differing angular velocities. The corresponding limiting case, when
the infinite plane is stationary and the fluid at infinity rotates at a
constant angular velocity, was first described by Bödewadt [3].

A vast wealth of material exists concerning the solutions of the
Newtonian rotating disk equations; the interested reader is
referred to Zandbergen and Dijkstra [4]. The authors provide a
thorough review of the major contributions made postdating von
Kármán’s seminal work.

Considerably less attention has been given to the corresponding
non-Newtonian rotating disk problem. Mitschka [5] modified the
von Kármán similarity solution to incorporate a power-law
governing viscosity relationship. In this case the base flow is not
an exact solution of the generalised Navier–Stokes equations and
a boundary-layer approximation is required. Both Mitschka and

Ulbrecht [6] and Andersson et al. [7] present basic flow solutions
for shear-thickening and shear-thinning power-law fluids.
However, the authors overlooked the importance of matching
these boundary-layer solutions to an external flow. Denier and
Hewitt [8] addressed this problem and presented corrected solu-
tions for both cases, noting that the structure of the solutions is
intrinsically different for shear-thickening and shear-thinning
fluids.

More recently, Ahmadpour and Sadeghy [9] (subsequently
referred to herein as AS) formally addressed the problem of the
flow due to a rotating disk when one considers Bingham plastic
fluids. Claiming to have found an exact solution to the problem,
the authors are only able to present numerical solutions for specific
values of the Reynolds number (Re) and dimensionless radius of
the disk (r). Having not considered the boundary-layer formulation
of the problem, the authors find that terms dependent on Re and r
appear in the formulation of the governing base flow ODEs, and
thus have the need to provide specific values for these constants
during their numerical solution process.

In this study we determine steady mean flow solutions for
power-law, Bingham and Carreau fluid models. The power-law
results are essentially a review of the work of Denier and Hewitt
[8] but are included here as they prove useful to compare with
the results owing from the more complex Carreau model. By intro-
ducing the modified Bingham number used by Matsumoto et al.
[10] in their film thickness investigation, we are able to determine
a governing set of ODEs dependent solely on this parameter, these
results are then compared to those of AS. Additionally, we present
solutions for shear-thickening and shear-thinning Carreau fluids
where now the flow is controlled by not one, but three
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dimensionless parameters. In Section 2 we formulate the problem
in the general case, results are presented in Section 3 and are dis-
cussed in Section 4. Conclusions are drawn in Section 5.

2. Formulation

Consider the flow of a steady incompressible generalised
Newtonian fluid due to a rotating disk located at z� ¼ 0. The disk
rotates about the z�-axis with angular velocity X�. Working in a
reference frame that rotates with the disk, the continuity and
Cauchy momentum equations are expressed as

$ � u� ¼ 0; ð1aÞ
q�½u� � $u� þX� � ðX� � r�Þ þ 2X� � u�� ¼ �rp� þ $ � s�: ð1bÞ

Here u� ¼ ðu�;v�;w�Þ are the velocity components in cylindrical
polar coordinates ðr�; h; z�Þ, the angular velocity vector is
X� ¼ ð0;0;X�Þ, the position vector is r� ¼ ðr�;0; z�Þ, the fluid density
is q� and p� is the fluid pressure. The stress tensor s� for incom-
pressible generalised Newtonian fluids is given by

s� ¼ l� _c� with l� ¼ l�ð _c�Þ; ð2Þ

where _c� ¼ $u� þ ð$u�ÞT is the rate-of-strain tensor and l�ð _c�Þ is
the generalised Newtonian viscosity. The magnitude of the rate-
of-strain tensor is _c� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _c� : _c�Þ=2

p
. The governing relationships

for l�ð _c�Þ that will be considered herein are:

Power-law model � l� ¼ m�ð _c�Þn�1
; ð3aÞ

Bingham model � l� ¼
1 for s� < s�y;

l�p þ s�yð _c�Þ
�1 for s� P s�y;

(
ð3bÞ

Carreau model � l� ¼ l�1 þ ðl�0 � l�1Þ½1þ ðk
� _c�Þ2�

ðn�1Þ=2
: ð3cÞ

Here m� is the consistency coefficient and n is the fluid index, for
n > 1 the fluid is said to be shear-thickening, whilst for n < 1 the
fluid is said to be shear-thinning. The Newtonian viscosity relation-
ship is recovered when n ¼ 1; s�y ¼ 0 and l�0 ¼ l�1, respectively. The
plastic-shear-rate viscosity is l�p, the magnitude of the shear stress

tensor is s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� : s�Þ=2

p
and s�y is the yield stress. The infinite-

shear-rate viscosity is l�1, the zero-shear-rate viscosity is l�0 and
k� is the characteristic time constant, often referred to as the ‘relax-
ation time’.

Assuming the flow to be axisymmetric the components of the
stress tensor are

sr�r� ¼ 2l� @u�

@r�

� �
; ð4aÞ

shh ¼ 2l� u�

r�

� �
; ð4bÞ

sz�z� ¼ 2l� @w�

@z�

� �
; ð4cÞ

sr�z� ¼ l� @u�

@z�
þ @w�

@r�

� �
¼ sz�r� ; ð4dÞ

sr�h ¼ l� r�
@

@r�
v�
r�

� �� �
¼ shr� ; ð4eÞ

shz� ¼ l� @v�
@z�

� �
¼ sz�h; ð4fÞ

where the magnitude of the rate-of-strain tensor takes the form

_c� ¼ 2
@u�

@r�

� �2

þ u�

r�

� �2

þ @w�

@z�

� �2
" #(

þ r�
@

@r�
v�
r�

� �� �2

þ @v�
@z�

� �2

þ @u�

@z�
þ @w�

@r�

� �2
)1=2

: ð5Þ

In the rotating frame of reference this system is closed subject
to the boundary conditions

u� ¼ v� ¼ w� ¼ 0 at z� ¼ 0; ð6aÞ
u� ! 0; v� ! �r�X� as z� ! 1: ð6bÞ

We non-dimensionalise the system by writing

uðr; zÞ ¼ u�ðr�; z�Þ
l�X�

; vðr; zÞ ¼ v�ðr�; z�Þ
l�X�

; r ¼ r�

l�
;

wðr; zÞ ¼ w�ðr�; z�Þ
d�l�X�

; pðr; zÞ ¼ p�ðr�; z�Þ
q�ðl�X�Þ2

; z ¼ z�

d�l�
:

We note here that the axial coordinate and velocity component
have been scaled by the boundary-layer thickness, d�, this is in
anticipation of a boundary-layer structure arising on the rotating
disk. One finds that

d� ¼ Re�1=ðqþ1Þ with Re ¼ q�X�
2�q

l�
2

r� ; ð7Þ

where throughout the forthcoming analysis q ¼ n for power-law
fluids and q ¼ 1 for Bingham plastic and Carreau fluids, whilst
r� ¼ m�;l�p;l�1 for power-law, Bingham plastic and Carreau fluids,
respectively. Thus, the scaled governing equations are

1
r
@ðruÞ
@r
þ @w
@z
¼ 0; ð8aÞ

u
@u
@r
þw

@u
@z
�ðvþrÞ2

r
¼�@p

@r
þ @

@z
l@u
@z

� �

þ 1
Re2=ðqþ1Þ

2
r
@

@r
lr
@u
@r

� �
þ @

@z
l@w
@r

� �
�2lu

r2

� �
;

ð8bÞ

u
@v
@r
þw

@v
@z
þ uv

r
þ 2u ¼ @

@z
l @v
@z

� �

þ 1
Re2=ðqþ1Þ

1
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; ð8cÞ

u
@w
@r
þw

@w
@z
¼ �Re2=ðqþ1Þ @p
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þ 1
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� �� �
; ð8dÞ

where the dimensionless viscosity functions (in the yielded region
when considering Bingham plastic fluids) l are defined as

Power-law model � l ¼ ðl̂Þn�1
; ð8eÞ

Bingham model � l ¼ 1þ 2rBnðl̂Þ�1
; ð8fÞ

Carreau model � l ¼ 1þ c0½1þ ðkl̂=rÞ2�
ðn�1Þ=2

; ð8gÞ

where Bn ¼ s�y= 2r�X�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�pq�X

�
q	 


is the Bingham number defined by

Matsumoto et al. [10]. The authors experimental investigations
have shown this quantity to be Oð1Þ for flows with Re� 1. The
Carreau viscosity ratio is c0 ¼ l�0 � l�1

� �
l�1 and

k ¼ r�k�X�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�X�=l�1

p
is the dimensionless equivalent of the con-

stant k�. Here

l̂ ¼ @u
@z

� �2

þ @v
@z

� �2

þ Ll̂

" #1=2

; ð8hÞ

the higher order terms, Ll̂, that contribute to the generalised viscos-
ity, are given in the Appendix A for completeness. We note that the
expressions for Bn and k can be simplified when one considers the
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