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a b s t r a c t

Subject of this paper is the derivation of a new constitutive law in terms of the logarithm of the confor-
mation tensor that can be used as a full substitute for the 2D governing equations of the Oldroyd-B,
Giesekus and other models. One of the key features of these new equations is that – in contrast to the
original log-conf equations given by Fattal and Kupferman (2004) – these constitutive equations
combined with the Navier–Stokes equations constitute a self-contained, non-iterative system of partial
differential equations. In addition to its potential as a fruitful source for understanding the mathematical
subtleties of the models from a new perspective, this analytical description also allows us to fully utilize
the Newton–Raphson algorithm in numerical simulations, which by design should lead to reduced
computational effort. By means of the confined cylinder benchmark we will show that a finite element
discretization of these new equations delivers results of comparable accuracy to known methods.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Viscoelastic phenomena are important for a variety of indus-
trial and medical applications, as, e.g., plastics profile extrusion
and the design of blood pumps. Regardless of the application,
the numerical simulation of flows of viscoelastic fluids often
leads to difficulties, when the Weissenberg number, which
relates the elastic forces to the viscous effects, is increased. This
challenge has become known as the High Weissenberg Number
Problem [1]. The difficulty is enhanced by the fact that it has
so far not been sufficiently clarified whether the lack in simula-
tion accuracy should be attributed to purely numerical deficien-
cies or is an inherent trait of the utilized constitutive models.
One of the more recent approaches to resolve the former are
the so-called log-conformation or shortly log-conf – formulations
going back to [2].

The log-conf formulations are applicable to models of the
form

@trþ ðu � rÞr� ðruÞr� rðruÞT ¼ �1
k

PðrÞ; ð1Þ

where u is a d-dimensional velocity vector, r the conformation ten-
sor, k the relaxation time and PðrÞ an analytic function. Examples
are the Oldroyd-B model [3] with PðrÞ ¼ r� 1 and the Giesekus

model [4] with PðrÞ ¼ r� 1þ aðr� 1Þ2 and the mobility factor
a 2 ½0;1�. It has been shown in [5] that these models require that
r maintains positive-definiteness through time if the initial data
is also positive-definite. A violation of this condition through the
numerical algorithm has been observed to lead to unrecoverable
failure of the simulation. The idea of the log-conf approach is to
inherently respect this condition by replacing the original primal
degrees of freedom, i.e., the conformation tensor r or the polymeric
stress T , by a new field W that is related to the conformation tensor
by the matrix exponential function r ¼ expðWÞ; hence the name
log-conformation formulation.

Of all possibilities, the choice of the exponential function as a
means of assuring positive-definiteness can be fortified when con-
sidering the properties of Lie groups, which are manifolds with a
group structure. An important class of Lie groups are the matrix
groups, like the general linear group GLðd;RÞ, which consists of
all invertible d� d matrices. In the constitutive equation, the
tensorial degrees of freedom, like r, are part of a submanifold of
GLðd;RÞ, which is constituted by the symmetric positive-definite
matrices. This space is different as compared to the spaces
containing the vectorial degrees of freedom, which are their own
tangent space. The latter is not the case for general manifolds, as
for example the symmetric positive-definite matrices. Nonetheless,
the notion of the tangent space is important, since coordinate
advancements within the tangent space of a manifold are
guaranteed to remain within the manifold – an advantage when
numerically advancing the coordinates. Fortunately, as GLðd;RÞ is
a Lie group the matrix exponential function maps the tangent
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space of the identity element – also known as the Lie algebra
glðd;RÞ ¼ Rd�d – to the corresponding connected component of
the Lie group. Furthermore, the subspace of the symmetric matri-
ces of glðd;RÞ is mapped onto the symmetric positive-definite
matrices, such that this particular subspace is the natural choice
for a vector space for W. It should not be left unmentioned that
one can still consider other functions than the matrix exponential
function to ensure positive-definiteness, as is, e.g., done in [6] by
the quadratic function.

Apart from the choice of a suitable transforming function, the
more intricate task is the derivation of a replacement for the origi-
nal constitutive equation that is formulated in terms of the new
degrees of freedom. Several approaches have so far been described
[2,7]. In [7], r is replaced by exp W in the original constitutive
equation in order to obtain the new equation. Although appealing
at first sight, this approach advects exp W instead of W, leading to
possible difficulties in the stabilization of the resulting numerical
discretization [8]. [2] derives the new constitutive equation based
on a decomposition of the velocity gradient ru. This decomposi-
tion leads to an equation with an intrinsically iterative character.
In this paper we derive a new constitutive equation that has nei-
ther of these shortcomings. One of its key features is that it can
be stated in a closed form together with the Navier–Stokes equa-
tions. The full derivation has so far been performed for two space
dimensions, whereas the three-dimensional case is still subject to
current research.

The procedure is outlined in the following fashion. The deriva-
tion of the new constitutive equation will be performed in Section 2
with the help of several lemmata, which can be found in Appendix
A. Section 3 introduces the numerical implementation of this new
method, which is subsequently verified by means of the well-
known confined cylinder benchmark in Section 4. The results are
compared to those in [9–11].

2. Log-conformation

For further calculations we will introduce the strain tensor

eðuÞ ¼ 1
2
ruþruT
� �

;

as well as the vorticity tensor

XðuÞ ¼ 1
2
ru�ruT
� �

;

such that we can rewrite Eq. (1) as

@trþ ðu � rÞr� ðeðuÞ þXðuÞÞr� rðeðuÞ �XðuÞÞ ¼ �1
k

PðrÞ: ð2Þ

In this section we are going to show that if W satisfies

@tWþ ðu � rÞWþ ½W;XðuÞ� � 2
X1
n¼0

B2n

ð2nÞ! fW; eðuÞg2n ¼ �
1
k

PðeWÞe�W;

ð3Þ

then r ¼ exp W satisfies the original constitutive Eq. (2). In Eq. (3),
Bi denote the Bernoulli numbers, ½X;Y � ¼ XY � YX the usual
commutator and fX;Ygn the iterated commutator, which is
defined as

fX;Ygn ¼ ½X; fX;Ygn�1�
fX;Yg0 ¼ Y :

Before we come to the proof we will first discuss some properties
and prerequisites of this equation.

Remark 1 (Sobolev spaces and Banach algebras). The analysis of
partial differential equations (PDEs) is highly entangled with the
theory of Sobolev spaces. Therefore, we will assume that W is
contained in a Sobolev space. The first thing one realizes when
looking at r ¼ exp W is that one needs to make sense of the
exponential mapping, which should also map, if possible, into the
same Sobolev space. Mathematically speaking we need a Sobolev
space that becomes, equipped with the pointwise matrix multi-
plication, a Banach algebra, such that we can define an analytical
functional calculus (cf. [12, Theorem 10.27]). Restricting ourselves
for the moment to the stationary problem and assuming that

W 2 Hn Rd;R
dðdþ1Þ

2

� �
it turns out to be sufficient to demand n > d=2

to make the components of W lie within a Banach algebra [13,
Theorem 4.39]. r, as well as PðrÞ, would then also be contained in

Hn Rd;R
dðdþ1Þ

2

� �
.

Moving to the time-dependent setting, we are going to
introduce the spaces

H ¼ C1ð½0; T�;Hs�1ðXÞÞ \ C0ð½0; T�;HsðXÞÞ
H0 ¼ C0ð½0; T�;Hs�1ðXÞÞ;

ð4Þ

with s > d=2 and X being a Lipschitz-bounded domain. Here, the
fact that the multiplications Hs�1ðXÞ � HsðXÞ ! Hs�1ðXÞ and
HsðXÞ � HsðXÞ ! HsðXÞ are continuous [14, Corollary 1.1.1] lets us
conclude that H denotes a Banach algebra. Furthermore, this multi-
plication can be extended to a continuous multiplication
� : H0 �H ! H0. Now deriving the Banach algebra H ¼ Hd�d and
Banach space H0 ¼ H0d�d, as well as symmetrized variants thereof

Hsym ¼ fX 2 HjXT ¼ Xg
H0sym ¼ fX 2 H0jXT ¼ Xg;

we are going to search for solutions of Eq. (3) in Hsym. The space H0

will serve as the Banach space containing the derivatives, since from
W 2 Hsym it follows that @tW;rW 2 H0sym. Moreover, requiring
eðuÞ 2 H0sym lets us interpret all summands in Eq. (3) as elements
of H0.

Allowing to formulate the theory in a Sobolev space setting is,
from the theoretical point of view, one of the key advantages of our
method compared to the original log-conf formulation [2],
although one has to add that it is not restricted to the choice in
(4) and there are other spaces that fulfill the requirements on H
and H0, fully listed in Appendix A. Examples are the smooth
function spaces, in which all equations can be thought of as
pointwise evaluations of the specific degrees of freedom. The latter
is especially helpful for comprehension since most of the following
proofs are purely algebraic in their nature.

Remark 2 (Well-definedness of the series). We have already
outlined in the last paragraph that all summands of the series
are elements of H0. What is left to consider is the absolute
convergence of the series. It can be analyzed using the generating
function definition of the Bernoulli numbers. Together with
B1 ¼ � 1

2 as the only non-zero odd Bernoulli number it can be stated
asX1
n¼0

B2n

ð2nÞ! x2n ¼ x
2
þ x

ex � 1
8jxj < 2p: ð5Þ

Furthermore, the inequality k½W; eðuÞ�2nkH0 6 22nkWk2n
H keðuÞkH0 and

the fact that the Bernoulli numbers are alternating (ð�1Þnþ1B2n > 0
if n P 1) guarantee that formula (3) is well-defined at least for
kWkH < p. Later we will alleviate this condition for the two-
dimensional case.
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