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a b s t r a c t

The stability of the flow due to a rotating disk is considered for non-Newtonian fluids, specifically shear-
thinning fluids that satisfy the power-law (Ostwald-de Waele) relationship. In this case the basic flow is
not an exact solution of the Navier–Stokes equations, however, in the limit of large Reynolds number the
flow inside the three-dimensional boundary layer can be determined via a similarity solution. An asymp-
totic analysis is presented in the limit of large Reynolds number. It is shown that the stationary spiral
instabilities observed experimentally in the Newtonian case can be described for shear-thinning fluids
by a linear stability analysis. Predictions for the wavenumber and wave angle of the disturbances suggest
that shear-thinning fluids may have a stabilising effect on the flow.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The stability of the boundary layer on a rotating disk due to the
flow of a Newtonian fluid is a classical problem that has attracted a
great deal of attention from numerous authors over many decades.
The first theoretical investigation of this problem was performed
by von Kármán [1]. The steady flow induced by the rotation of an
infinite plane with uniform angular velocity is an exact solution
of the Navier–Stokes equations. The flow is characterised by the
lack of a radial pressure gradient near to the disk to balance the
centrifugal forces, so the fluid spirals outwards. The disk acts as a
centrifugal fan, the fluid emanating from the disk being replaced
by an axial flow directed back towards the surface of the disk.

Batchelor [2] showed that this type of flow is in fact just a lim-
iting case of a whole number of flows with similarity solutions in
which both the infinite plane and the fluid at infinity rotate with
differing angular velocities. The corresponding limiting case when
the infinite plane is stationary and the fluid at infinity rotates at a
constant angular velocity was first described by Bödewadt [3].

The stability of the von Kármán flow was first investigated by
Gregory et al. [4]. They observed spiral modes of instability in
the form of co-rotating vortices, measuring the angle between
the normal to the radius vector and the tangent to the vortices to
be / � 13�. Gregory et al. [4] showed that these experimental

observations were in excellent agreement with their own predic-
tions obtained from a linear stability analysis. Hall [5] extended
this work taking into account the viscous effects, showing that
an additional stationary short-wavelength mode exists which has
its structure fixed by a balance between viscous and Coriolis forces.

There have been several numerical studies of the stability of the
von Kármán boundary layer. Examples include that of Malik [6],
Lingwood [7]. Both studies used a parallel-flow approximation
for the basic flow. Malik [6] considered convective instability and
presented results for stationary vortices, finding that for a large
Reynolds number / � 13� for inviscid neutrally stable modes. Ling-
wood [7] extended these results by considering Ekman and Böde-
wadt flows. She also investigated the absolute instability of these
flows, showing that the von Kármán boundary layer is locally abso-
lutely unstable for Reynolds number above a critical value. Subse-
quently, Davies and Carpenter [8] considered the global behaviour
of the absolute instability of the rotating-disk boundary layer. By
direct numerical simulations of the linearised governing equations
they were able to show that the local absolute instability does not
produce a linear global instability. Suggesting that, instead, con-
vective-type behaviour dominates, even within the region of local
absolute instability.

Considerably less attention has been given to the problem of the
boundary layer flow due to a rotating disk when considering a non-
Newtonian fluid. Mitschka [9] extended the von Kármán solution
to fluids that adhere to the power-law relationship. In this case
the basic flow is not an exact solution of the Navier–Stokes
equations and a boundary layer approximation is required. Both
Mitschka and Ulbrecht [10], Andersson et al. [11] present
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numerical solutions for the basic flow for shear-thickening and
shear-thinning fluids. However, both sets of authors overlooked
the importance of matching this boundary-layer flow with the
outer flow. Denier and Hewitt [12] addressed this problem and
presented corrected similarity solutions of the boundary-layer
equations. This involved a comprehensive knowledge of the
far-field behaviour. Their analysis revealed different situations for
shear-thinning and shear-thickening fluids. For shear-thickening
fluids the boundary-layer solution is complicated by a region of
zero viscosity away from the boundary. For the more common
shear-thinning fluids, beyond a critical level of shear-thinning,
the basic flow solution grows in the far field, so it cannot be
matched to an external flow. For more details of these cases the
reader is referred to Denier and Hewitt [12].

Thus, in the current paper we restrict our attention to moderate
levels of shear-thinning, where the boundary-layer solution may be
matched to an outer flow (although this will not be in similarity form).
In this case we can use a boundary-layer similarity solution to give an
analytic description of the stability of the three-dimensional flow for
large Reynolds numbers. This only requires knowledge of the
boundary layer since this is where the vortices are confined.

Specifically, we look to extend the previous works concerning
convective instability of Newtonian flows to include the additional
viscous effects of a power-law fluid. The current study will follow
the approach of Hall [5] to investigate the so called stationary
‘‘inviscid instabilities’’ with vortices occurring at the location of
an inflection point of the effective velocity profile.

2. Formulation

Consider the flow of a steady incompressible non-Newtonian
fluid due to a rotating disk located at z ¼ 0. The disk rotates about
the z-axis with angular velocity X. Working in a reference frame
that rotates with the disk, the dimensionless continuity and Na-
vier–Stokes equations are expressed as

$ � u ¼ 0; ð1Þ

u � $uþ 2½ðẑ � uÞ � rr̂� ¼ �rpþ 1
Re

$ � s: ð2Þ

Here u ¼ ðu;v;wÞ are the velocity components in cylindrical polar
coordinates ðr; h; zÞ where r and z have been made dimensionless
with respect to some reference length l and ðr̂; ĥ; ẑÞ are the corre-
sponding unit vectors in the respective coordinate directions. The
velocities and pressure have been non-dimensionalised by Xl and
qX2l2 respectively, the fluid density is q and p is the fluid pressure.
The stress tensor s for incompressible non-Newtonian fluids is gi-
ven by the generalised Newtonian model

s ¼ l _c with l ¼ lð _cÞ; ð3Þ

where _c ¼ $uþ ð$uÞT is the rate of strain tensor and lð _cÞ is the
non-Newtonian viscosity. The magnitude of the rate of strain tensor
is

_c ¼
ffiffiffiffiffiffiffiffiffiffi
_c : _c

2

r
: ð4Þ

The governing relationship for lð _cÞ when considering a power-
law fluid is

lð _cÞ ¼ mð _cÞn�1
; ð5Þ

where m is known as the consistency coefficient and n the power-law
index, with n > 1; n < 1 corresponding to shear-thickening and
shear-thinning fluids, respectively. The modified non-Newtonian

Reynolds number is defined as Re ¼ qX2�nl2
=m.

In the Newtonian case an exact solution of the Navier–Stokes
equations exists, as was first determined by von Kármán [1]. Due

to the relative complexity of the modified stress tensor no such
solution exists when considering the flow of a power-law fluid.
However, in the limit of large Reynolds number progress can be
made as the leading order boundary-layer equations admit a sim-
ilarity solution analogous to the exact solution obtained in the
Newtonian problem.

As noted by Denier and Hewitt [12] the boundary-layer equa-
tions at lowest order are
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@z

� �2

þ @vB
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" #ðn�1Þ=2

: ð6dÞ

To solve for the basic flow inside the boundary layer Mitschka
[9] introduced a similarity solution of the form

uB ¼ ½r�uðgÞ; r�vðgÞ; rðn�1Þ=ðnþ1ÞRe�1=ðnþ1Þ �wðgÞ�; ð7Þ

where the similarity variable g is given by

g ¼ rð1�nÞ=ðnþ1ÞRe1=ðnþ1Þz: ð8Þ

The dimensionless functions �u; �v and �w are determined, after
substitution of (7) into (6a)–(6c) and (6d) by

2�uþ 1� n
nþ 1

g�u0 þ �w0 ¼ 0; ð9aÞ

�u2 � ð�v þ 1Þ2 þ �wþ 1� n
nþ 1

g�u
� �

�u0 � ½ð�u02 þ �v 02 Þ
ðn�1Þ=2

�u0�
0
¼ 0; ð9bÞ

2�uð�v þ 1Þ þ �wþ 1� n
nþ 1

g�u
� �

�v 0 � ½ð�u02 þ �v 02 Þ
ðn�1Þ=2

�v 0�
0
¼ 0; ð9cÞ

where the primes denote differentiation with respect to g. The
appropriate boundary conditions are

�u ¼ �v ¼ �w ¼ 0 at g ¼ 0; ð10aÞ
�u! 0; �v ! �1 as g!1: ð10bÞ

Denier and Hewitt [12] have shown that bounded solutions to 9a,
9b and 9c subject to (10a) and (10b) exist only in the shear-thinning
case for n > 1

2. In the shear-thickening case they have shown that
solutions become non-differentiable at some critical location gc ,
and although it transpires that this singularity can be regularised
entirely within the context of the power-law model, we will not
consider such flows here. Thus in this study we will consider flows
with power-law index in the range 1

2 < n 6 1. They have also shown
that for 1

2 < n < 1 to ensure the correct algebraic decay in the
numerical solutions one must apply the Robin condition

ð�u0; �v 0Þ ¼ n
gðn� 1Þ ð

�u; �vÞ as g!1; ð11Þ

at some suitably large value of g ¼ g1 � 1. In the Newtonian case
this relationship becomes singular, this is due to the fact that when
n ¼ 1 the functions �u and �v decay exponentially. Cochran [13]
showed that in this case

ð�u0; �v 0Þ ¼ �w1ð�u; �vÞ as g!1; ð12Þ

where w1 ¼ �2
R1

0
�udg.

Numerical solutions of 9a, 9b and 9c subject to (10a) and (10b)
are presented in Table 1 and Fig. 1. These results were obtained
using a fourth-order Runge–Kutta quadrature routine twinned
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