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a b s t r a c t

We apply the multiscale FENE model to a 3D square–square contraction flow problem and to two 2D
benchmark experiments. For this purpose, we couple the stochastic Brownian configuration field method
(BCF) with our fully parallelized three-dimensional Navier–Stokes solver NaSt3DGPF. The robustness of
the BCF method enables the numerical simulation of higher Deborah number flows for which most mac-
roscopic methods suffer from stability issues. We validate our implementation by investigating the
numerical error for a 2D viscoelastic Poiseuille flow that has an analytical solution. Furthermore, we com-
pare the FENE model with the FENE-P closure for a two-dimensional 4 : 1 contraction flow. We then com-
pare the results of our 3D simulations with that of experimental measurements from literature and
obtain a very good agreement. In particular, we are able to reproduce effects such as strong vortex
enhancement, streamline divergence and flow inversion for highly elastic flows. Due to their computa-
tional complexity, our simulations require massively parallel computations. To this end, we use a domain
decomposition approach with MPI.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The macroscopic mathematical modeling of dilute viscoelastic
fluids usually involves an additional stress tensor in the Navier–
Stokes equations and the solution of a differential or integral con-
stitutive equation to compute the stress tensor entries. Here, the
Oldroyd-B model can be employed. It originates from a two-bead
dumbbell model with a linear Hookean spring force. Despite its
shortcoming to describe extensional flows accurately, it is widely
used for simulating dilute polymeric fluids. Other constitutive
models for dilute polymeric fluids include the FENE-P model of
Peterlin [1] and the FENE-L model of Lielens et al. [2]. Both models
are simplifications, obtained with closure approximations, of a
two-bead dumbbell system connected with a finitely extensible
nonlinear elastic (FENE) spring. In the literature, there is no known
direct constitutive model for the FENE spring so far and it is widely
assumed that it does not exist. An extensive description of consti-
tutive models is given in the book by Owens and Phillips [3].

More advanced multiscale approaches have been recently
developed that directly solve the kinetic equations of the micro-
scopic system. In this case, the macroscopic stress tensor results

from the internal configurations of the underlying molecular sys-
tem. Using this ansatz avoids further closure errors but yields the
mathematical problem of adequately modeling the internal orien-
tations. Biller and Petruccione theoretically investigated this ap-
proach in their pioneering work in 1988 [4]. A detailed overview
of micro-macro approaches is given in a general survey by Keu-
nings [5].

Representing polymer molecules by a system of beads con-
nected with massless springs leads to a high-dimensional diffusion
equation, the Fokker–Planck equation, that describes the evolution
of the configuration probability density function (cf. [6]). Then,
Kramers’ formula connects the stress tensor with the expectation
of the instantaneous polymer configuration. Even for a simple
dumbbell system, the Fokker–Planck equation for non-homoge-
neous, three-dimensional flow systems is six-dimensional. Three
dimensions are needed for the physical space of the flow system
and three dimensions are needed to describe the dumbbell’s inter-
nal orientation which is referred to as configuration space. More
complex multi-bead systems involve configuration spaces of high-
er dimensionality and require special numerical treatment to re-
duce the curse of dimensionality. Chauviére and Lozinski [7]
proposed a first-order operator splitting of the Fokker–Planck
equation to separate operator treatment in the physical space from
that of the configuration space [8,9]. They applied their spectral
method approach to two- and three-dimensional configuration
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spaces and non-homogeneous two-dimensional physical spaces.
Recently, Knezevic and Süli [10] used a similar technique that is
based on a spectral Galerkin discretization with weighted ansatz
and test functions in configuration space and a three-dimensional
finite element discretization in physical space. A promising new
approach to deal with configuration spaces of up to twenty dimen-
sions is the Proper Generalized Decomposition (PGD) method (cf.
[11]). So far, the solution in high-dimensional configuration spaces
with the PGD approach has been primarily applied to homoge-
neous flow problems that are simple in the flow space. The most
advanced implementation which we are aware of is a two-dimen-
sional contraction flow problem considered in Mokdad et al. [12].

A more common method for multiscale viscoelastic flow simu-
lations is based on the theory of stochastic calculus. The main idea
is to rewrite the Fokker–Planck equation as a formally equivalent
stochastic differential equation in which a Wiener process models
the Brownian forces acting on the polymer. Numerical treatment of
stochastic differential equations normally leads to stochastic noise
in the stress tensor solution. On the other hand, stochastic ap-
proaches are more adapted to higher Weissenberg or Deborah
number flows than comparable methods as noted by Mangoubi
et al. [13]. Furthermore, they are, due to their intrinsic Monte-Carlo
method, less affected by the curse of dimensionality than deter-
ministic Fokker–Planck based methods in high-dimensional con-
figuration spaces.

In 1993, Laso and Öttinger [14] introduced the particle-based
CONNFFESSIT method (Calculation of Non-Newtonian Flow: Finite
Elements and Stochastic Simulation Techniques) and applied it to
two-dimensional flow problems. In this approach, a large number
of sample particles in the flow domain approximates the stochastic
process numerically. Each particle, representing a polymeric config-
uration, moves within the physical flow domain. Using Monte-Carlo
integration, we obtain the stress tensor as the first moment of the
particle orientations. However, the method exhibits several short-
comings such as wild spatial fluctuation of the stress tensor which
is caused by a non-uniform particle density and uncorrelated
Brownian forces acting on individual sample particles (cf. [15]).

A different stochastic approach, the Brownian configuration
field (BCF) method by Hulsen et al. [16], significantly reduces the
drawbacks of CONNFFESSIT by using an Eulerian particle descrip-
tion. The BCF method uses a uniform number of configuration
fields at fixed spatial positions to ensure a homogeneous polymeric
density in physical space. Furthermore, it assumes locally corre-
lated Brownian forces which leads to a uniform stress tensor field
in the flow space. According to Bonvin and Picasso [17], this simpli-
fication might reduce the global accuracy of the stress tensor field.
On the other hand, the spatial smoothness of the BCF method leads
to a considerably increased stability of the numerical scheme.

Multiscale simulations involve an increased computational ef-
fort compared to purely macroscopic approaches. Therefore, most
micro-macro simulations are so far restricted to homogeneous
flow fields or two-dimensional physical spaces (cf. [18], Prieto
et al. [19], Koppol et al. [20,21] and Smith and Sequeira [22]). To
the best of our knowledge, Ramírez and Laso [23] performed the
first three-dimensional stochastic BCF simulations and only re-
cently Knezevic and Süli [10] accomplished the first three-dimen-
sional simulation for a coupled Fokker–Planck and Stokes flow
system. In both cases, the authors parallelized their algorithms to
reduce computing time.

In the following, we present the first 3D multiscale FENE simu-
lations using the BCF approach for square–square contraction flows
and compare our results with that from laboratory experiments.
Our multiscale simulations are more stable than comparable mac-
roscopic flows with high Deborah numbers.

The remainder of this article is organized as follows: First, we
consider the governing equations on the macro- and micro-scale

in Section 2. We then describe adequate initial conditions for the
stochastic equations in the case of a Hookean and a FENE dumbbell
system. In Section 3 we discuss spatial and temporal discretization
schemes of the Navier–Stokes, Oldroyd-B and stochastic differen-
tial equations. Furthermore, we describe our domain decomposi-
tion approach to enable parallel computation using MPI and
consider variance reduction techniques. In Section 4.1, we investi-
gate the numerical error for a 2D viscoelastic Poiseuille flow that
has an analytical solution in the Oldroyd-B/Hookean dumbbell
case. We then consider two-dimensional contraction flows for
the FENE and FENE-P model in Section 4.2 for which published
simulation results are available. Moreover, we present the results
of 3D square–square contraction flows in Section 4.3 and compare
them with those from literature. At last, we evaluate our findings
and discuss possible extensions.

2. Governing equations for the micro-macro model

Throughout this article, we consider fluid flow in a bounded do-
main X � R3 and refer to X as physical space. For any position x 2 X
and any time t 2 ð0; T� 2 R, the fluid velocities uðx; tÞ 2 R3 and the
hydrodynamic pressure pðx; tÞ 2 R combined with appropriate
boundary conditions fully describe the current state of a purely
Newtonian system. We first give the Navier–Stokes and the stress
tensor equations on the macro-scale. Subsequently, we specify the
alternative stress tensor approaches on the micro-scale that either
involve a Fokker–Planck or a stochastic differential equation.

2.1. Macroscopic equations

On the macroscopic scale, conservation of momentum and mass
for an incompressible and isothermal viscoelastic one-phase flow
is given by the coupled system of equations

q
@u
@t
þ u � ru

� �
¼ �rpþ gsDuþr � sp; ð1Þ

r � u ¼ 0; ð2Þ

with q 2 Rþ as the fluid density, gs 2 Rþ as solvent viscosity, and sp

as the second-order tensor for the polymeric stress contribution.
These equations are coupled with initial conditions

uðx;0Þ ¼ u0ðxÞ;
pðx;0Þ ¼ p0ðxÞ;
spðx;0Þ ¼ s0ðxÞ 8x 2 X;

with one of the following conditions for the velocity field on the
boundary @X ¼ C1 [ C2 [ C3

ujC1
¼ u0 inflow boundary C1;

ujC2
¼ 0 no-slip boundary C2;

@nðu � nÞjC3
¼ 0; @nðu � tÞjC3

¼ 0 outflow boundary C3:

Here, n denotes the outward pointing unit normal and t denotes the
tangential vector on @X, respectively.

On the macro-scale we consider the Oldroyd-B model. It is
equivalent to a Hookean dumbbell system on the micro-scale. First,
for an arbitrary second-order tensor A we define the upper con-
vected derivative or Oldroyd derivative as

A
O

� @A
@t
þ ðu � rÞA�ru � A� A � ðruÞT :

Then, the Oldroyd-B model takes the form

sp þ ks
O

p ¼ 2gpD; ð3Þ

with the symmetric deformation tensor
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