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a b s t r a c t

Stokes’ second problem is about the steady-state oscillatory flow of a viscous fluid due to an oscillating
plate. We consider Stokes’ second problem for a class of viscoelastic fluids that are characterized by a
fractional constitutive equation. The exact analytical solution as parametrized by the order of the frac-
tional derivative is obtained. We provide detailed analyses and discussions for effects of the model
parameters on the wave length and the amplitude in the flow field. We show that, as the order varies
from 0 to 1, the flow displays a transition from elastic to viscous behavior. Finally, we consider the case
of the constitutive equation for a fractional element or a spring-pot in series with a dashpot.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stokes’ second problem is a benchmark problem in fluid
mechanics. It describes the steady-state oscillatory flow in a
semi-infinite flow domain arisen from an oscillating infinite flat
plate that undergoes sinusoidal oscillations parallel to itself. Only
the steady periodic solution, after the starting transients have died,
will be considered; thus there are no initial conditions to satisfy. In
Stokes’ second problem, the flow velocity v ¼ uðy; tÞi, where i is the
unit vector along the x-axis of the Cartesian coordinate system, sat-
isfies the diffusion equation [1,2]

@u
@t
¼ m

@2u
@y2 ; y > 0; ð1Þ

subject to the boundary conditions

uð0; tÞ ¼ U cosðxtÞ; uðþ1; tÞ ¼ 0; ð2Þ

where m is the kinematic viscosity, and U and x are constants. Thus
the solution of Stokes’ second problem is

uðy; tÞ ¼ U exp �y

ffiffiffiffiffiffi
x
2m

r !
cos xt � y

ffiffiffiffiffiffi
x
2m

r !
; ð3Þ

which is periodic with respect to t.
In this work, we consider Stokes’ second problem for a class of

viscoelastic fluids as characterized by a fractional constitutive
equation. In recent years, the fractional calculus has been intro-

duced to effectively formulate the constitutive relations of visco-
elastic fluids [3–10].

Let f ðtÞ be piecewise continuous on ð�1;þ1Þ, then the Rie-
mann–Liouville fractional integral of f ðtÞ of order a is defined as
[5,6,11–14]

d�a

dt�a f ðtÞ ¼
Z t

�1

ðt � sÞa�1

CðaÞ f ðsÞds; a > 0; ð4Þ

where Cð�Þ is Euler’s gamma function. In this work, we take the low-
er limit of the integral in Eq. (4) to be negative infinity in order to
adapt it to the steady-state problem, where no initial conditions
are to be satisfied.

The Caputo fractional derivative of f ðtÞ of order a is defined as
[5,6,11–14]

da

dta f ðtÞ ¼ d�ðn�aÞ

dt�ðn�aÞ f ðnÞðtÞ; 0 6 n� 1 < a < n; n 2 Nþ: ð5Þ

We assume that the considered viscoelastic fluid complies with
the fractional constitutive relation for the shear stress s and the
shear strain � [3–6,8,15]

s ¼ Gkb db�
dtb ¼ Gkb db�1 _�

dtb�1 ; 0 < b < 1; ð6Þ

where G is the shear modulus and k is the relaxation time. A frac-
tional calculus element whose constitutive law satisfies Eq. (6) is
said to be a spring-pot [3].

In Section 3, we will consider a constitutive equation where a
fractional element connects in series with a dashpot.
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2. Governing equation and solution

Suppose that an incompressible viscoelastic fluid occupies the
space over a flat plate of infinite extent situated in the ðx; zÞ plane.
The plate oscillates in its own plane with the velocity U cosðxtÞi,
where the amplitude U is assumed to be small. Owing to the vis-
cosity, the fluid above the plate also moves, its velocity being of
the form v ¼ vðy; tÞ ¼ uðy; tÞi. The schematic of the problem under
consideration is shown in Fig. 1. We consider the case of steady-
state flow, i.e. the fully developed flow such that for each specified
y > 0, the velocity uðy; tÞ is periodic in time t.

In the absence of body forces and a pressure gradient, the bal-
ance equations of mass and momentum governing the flow of an
incompressible fluid are

r � v ¼ 0; q
Dv
Dt
¼ r � S; ð7Þ

where v ¼ ðu;v ;wÞ is the velocity, q is the density of the fluid,
D
Dt ¼ @

@t þ v � r is the material time derivative, and S is the extra
stress tensor.

For our particular Stokes’ second problem, v ¼ uðy; tÞi and
hence the motion equation is reduced to

@u
@t
¼ 1

q
@S12

@y
; ð8Þ

where S12 is the shear stress. Substituting the fractional constitutive
equation

S12 ¼ Gkb @
b�1

@tb�1

@u
@y
; 0 < b < 1; ð9Þ

we obtain the governing equation

@u
@t
¼ mðbÞ @

b�1

@tb�1

@2u
@y2 ; y > 0; 0 < b < 1; ð10Þ

where

mðbÞ ¼ Gkb=q; ð11Þ

and the dimension is ½mðbÞ� ¼ L2

T2�b. The velocity u ¼ uðy; tÞ satisfies
the boundary conditions

uð0; tÞ ¼ U cosðxtÞ; U > 0; x > 0; ð12Þ
uðþ1; tÞ ¼ 0: ð13Þ

We note that there are no initial conditions since we consider
the steady-state oscillating flow.

First, we look for the solution of complex values of Eq. (10) sat-
isfying the boundary conditions

uð0; tÞ ¼ Ueixt ; uðþ1; tÞ ¼ 0: ð14Þ

Then we take the real part of the solution of complex values to ob-
tain the solution of problem (10)–(13).

We assume that the solution in terms of complex values per-
mits the separation of variable as

uðy; tÞ ¼ f ðyÞeixt ; ð15Þ

where f ðyÞ satisfies

f ð0Þ ¼ U; f ðþ1Þ ¼ 0; ð16Þ

due to the boundary condition (14).
Substituting Eq. (15) into Eq. (10), we readily deduce that

f ðyÞeixtðixÞ ¼ mðbÞf 00ðyÞ @
b�1

@tb�1 eixt : ð17Þ

The fractional integral on the right hand side is calculated to be

@b�1

@tb�1 eixt ¼
Z t

�1

ðt � sÞ�b

Cð1� bÞ e
ixsds ¼ eixt

Z þ1

0

s�b

Cð1� bÞ e
�ixsds

¼ eixtðixÞb�1
: ð18Þ

Inserting Eq. (18) into Eq. (17) yields

f 00ðyÞ ¼ ðmðbÞÞ�1ðixÞ2�bf ðyÞ: ð19Þ

Therefore the general solution of Eq. (19) is

f ðyÞ ¼ A exp �ðmðbÞÞ�1=2ðixÞ1�
b
2y

� �
þ B

� exp ðmðbÞÞ�1=2ðixÞ1�
b
2y

� �
: ð20Þ

From Eq. (16), we deduce that B ¼ 0 and A ¼ U.
Hence the solution of problem (10)–(13) is obtained by calculat-

ing the real part as

uðy; tÞ ¼ Re½U expðixt � ðmðbÞÞ�1=2ðixÞð2�bÞ=2yÞ�
¼ U expð�g1Þ cosðxt � g2Þ; ð21Þ

where

g1 ¼ y

ffiffiffiffiffiffiffiffiffiffiffi
x2�b

mðbÞ

s
sin

pb
4
; g2 ¼ y

ffiffiffiffiffiffiffiffiffiffiffi
x2�b

mðbÞ

s
cos

pb
4
: ð22Þ

We observe that, in the solution (21), there are three nondimen-
sional variables: u=U;xt and y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�b=mðbÞ

p
. We also note that what

we do is a Fourier transform of the governing equation with respect
to t.

3. Results and discussion

Eq. (21) represents harmonic vibrations for each specified y > 0.
The flow field has the same oscillating frequency x as the plate,
and its amplitude is U expð�g1Þ. As the value of y increases the
amplitude decreases exponentially. The phase difference of the
flow velocity at a point with y coordinate above the plate and
the plate vibration is g2. The wave length of the fluid vibration is

l ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gkb

qx2�b

s
sec

pb
4
; ð23Þ

which is obtained by setting g2 ¼ 2p in Eq. (22) and using Eq. (11).
Two flow layers with the distance l have the same phases. The wave
length l monotonically decreases as the oscillating frequency x in-
creases. In Fig. 2, we plot the curves of the wave length l versus the
oscillating frequency x for G=q ¼ 1; k ¼ 1 and for b = 0, 0.5 and 1,
respectively.

From the derivative

dl
db
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gkb

qx2�b

s
sec

pb
4

� �
p
2

tan
pb
4

� �
þ lnðkxÞ

� �
; ð24Þ

we observe that, if k and x satisfy the inequality lnðkxÞ 6 �p=2,
then the wave length l monotonically decreases as b increases from
0 to 1; if �p=2 < lnðkxÞ < 0, then the wave length l has a minimum

x

y

Ucos ωt

Fig. 1. Schematic diagram of Stokes’ second problem.
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