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a b s t r a c t

We report the results of a detailed numerical investigation of inertialess viscoelastic fluid flow through
three-dimensional serpentine (or wavy) channels of varying radius of curvature and aspect ratio using
the Oldroyd-B model. The results reveal the existence of a secondary flow which is absent for the equiv-
alent Newtonian fluid flow. The secondary flow arises due to the curvature of the geometry and the
streamwise first normal–stress differences generated in the flowing fluid and can be thought of as the
viscoelastic equivalent of Dean vortices. The effects of radius of curvature, aspect ratio and solvent-to-
total viscosity ratio on the strength of the secondary flow are investigated. The secondary flow strength
is shown to be a function of a modified Deborah number over a wide parameter range.

� 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

It is well known that flows within pipes and ducts can give rise
to secondary flows. In addition to the base primary flow in the
streamwise direction, a secondary flow, albeit usually much weak-
er, can develop in the cross-stream direction. In the case of Newto-
nian fluids, so-called Dean vortices [1,2] appear in curved ducts or
bends and are a consequence of flow inertia. Dean flow gives rise to
a pair of vortices in the cross-section carrying flow from the inside
to the outside of the bend across the centre and back around the
edges. (NB: Malheiro et al. [3] have recently studied the effect of
elasticity on such vortices). For Newtonian fluids in the absence
of inertia, or in the absence of curvature, i.e. in straight pipes and
ducts of uniform cross-section, there is no physical driving mech-
anism for a secondary flow and the laminar flow remains unidirec-
tional. Interestingly, Lauga et al. [4] show that a secondary flow
must develop if a channel has both varying cross-sectional area
and non-constant curvature even in the creeping-flow limit. Note
that turbulent flow can give rise to a secondary flow even in the
case of straight ducts as long as the geometry is non-axisymmetric
[5,6] i.e. not a circular pipe or a concentric annulus.

For viscoelastic fluid flows, in contrast, secondary flows can de-
velop in the absence of inertia and curvature. Weak secondary
flows are observed even for straight ducts of uniform cross-section
as long as the geometry is non-axisymmetric. Such elastically-
induced secondary flows are driven by imbalances in the second-
normal stress difference and have been studied in detail by a
number of authors [7–12]. Interestingly, Speziale [13] highlighted
the relationship between this type of secondary flow and that dri-
ven by turbulence as discussed above. As the magnitude of the sec-
ond-normal–stress difference is usually very small for most dilute
polymer solutions, being estimated to be at most 20% of the first
normal–stress difference for concentrated solutions and melts
[14], these secondary flows tend to be extremely weak being of
the order of 1% or less of the primary streamwise velocity [9]. As
a consequence, numerical simulations of viscoelastic constitutive
equations which predict a zero second normal–stress difference,
such as the upper-convected Maxwell and Oldroyd-B models
[15], the simplified Phan–Thien–Tanner (PTT) model [16] and
FENE-type models [17,18], all predict unidirectional flow in such
straight ducts, at least prior to the appearance of purely-elastic
instabilities beyond a critical Weissenberg number [19].

The combined case of duct curvature and fluid elasticity in the
inertialess limit, which has been significantly less studied, can also
give rise to secondary flows. These secondary flows can occur in
both axisymmetric as well as non-axisymmetric geometries and
can be observed even for fluids which exhibit a zero second nor-
mal–stress difference in steady simple shear flow. This has been
elegantly shown by Fan et al. [20] who investigated flow in curved
pipes. To the best of our knowledge, for flows in non-axisymmetric
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geometries the only paper which investigates inertialess secondary
flows is the recent work by Norouzi et al. [21]. They use the sec-
ond-order fluid model [22] to investigate curved ducts with square
cross-sections both with and without inertia. By varying the
parameters in the second-order fluid model to control the ratio
of first to second normal–stress differences, Norouzi et al. were
able to show that the strength and direction of the secondary flow
could be varied. When the first normal–stress difference was dom-
inant the direction of the viscoelastic secondary flow was found to
be in the same sense as that observed by Fan et al. [20], i.e. in the
same sense as inertial Dean flow, but when the first normal–stress
difference was zero and only second normal–stresses occurred the
secondary flow changed direction. The second-order fluid used by
Norouzi et al. is appropriate in the limit of vanishingly small elas-
ticity, and therefore to small Deborah numbers, and is thus useful
to investigate the qualitative behaviour of polymer flow phenom-
ena such as the direction of secondary flows. The quantitative pre-
diction of the strength of the secondary flow beyond the
asymptotic limit of vanishingly elasticity will be influenced by
the choice of constitutive equation and the effects of more realistic
constitutive equations on the strength of this elastically-driven
secondary flow has not been investigated. In the current paper
we report the results of a detailed numerical investigation of iner-
tialess viscoelastic fluid flow through three-dimensional serpen-
tine (or wavy) channels [23,24] of varying radius and aspect
ratios using the Oldroyd-B model to fully explore this secondary
flow regime. Such serpentine channels are composed of a series
of circular half loops of alternating curvature and represent proto-
type geometries for investigating curvature effects experimentally
[23,24].

2. Viscoelastic constitutive equation and numerical method

The three-dimensional numerical simulations assume isother-
mal flow of an incompressible viscoelastic fluid described by the
Oldroyd-B model [15] in a channel of rectangular cross section.
The equations that need to be solved are those of mass
conservation,

r � u ¼ 0; ð1Þ

and momentum

0 ¼ �rpþ gsr2uþr � s; ð2Þ

assuming creeping-flow conditions (i.e. the inertial terms are ex-
actly zero), where u is the velocity vector with Cartesian compo-
nents (ux, uy, uz), p is the pressure and gs is the solvent viscosity.
For the Oldroyd-B model the evolution equation for the polymeric
extra-stress tensor, s, is

sþ k
@s
@t
þ u � rs

� �
¼ gpðruþruTÞ þ kðs � ruþruT � sÞ; ð3Þ

where k and gp are the relaxation time and polymeric contribution
to the viscosity of the fluid respectively, both of which are constant
in this model. For a large number of simulations shown here we set
the solvent viscosity contribution to zero and, in this case, the
upper-convected Maxwell (UCM) model is recovered.

Although the Oldroyd-B model exhibits an unbounded steady-
state extensional viscosity above a critical strain rate (1=2k), in
shear-dominated serpentine channel geometries such model defi-
ciencies are unimportant and it is arguably the simplest differential
constitutive equation which can capture many aspects of highly-
elastic flows [25,26]. Many more complex models (e.g. the FENE-
P, Giesekus and Phan–Thien–Tanner models – see e.g. Bird et al.
[22]), simplify to the Oldroyd-B model in certain parameter limits
and thus its generality makes it an ideal candidate for fundamental

studies of viscoelastic fluid flow behaviour. The governing equa-
tions are solved using a time-marching implicit finite-volume
numerical method, based on the logarithm transformation of the
conformation tensor [27]. Additional details about the numerical
method can be found in Afonso et al. [28,29] and in other previous
studies (e.g. [30,31]). For low Wi the numerical solution converges
to a steady solution, which was assumed to occur when the L2

norm of the residuals of all variables reached a tolerance of 10�6.
Beyond a critical Weissenberg number a time-dependent purely-
elastic instability occurs [24]. The results in the current paper are
restricted to Weissenberg numbers below the occurrence of this
purely-elastic instability: thus the flow remains steady.

3. Flow geometry, dimensionless numbers and computational
meshes

The serpentine channels used in this work consist of a series of
half-loops of width W, height H and inner radius R as shown sche-
matically in Fig. 1. Although the geometries are fully three-dimen-
sional we impose a symmetry boundary condition on the
xy-centreplane to reduce the computational burden. Limited simu-
lations on the complete domain confirmed that, for the steady re-
sults shown here, the imposition of symmetry has no effect on the
results. In all the results which follow the symmetry plane is high-
lighted by a dashed boundary (see Fig. 1c for example). The inner
and outer walls are also indicated. A series of geometries were cre-
ated such that the effects of radius (R/W) and aspect ratio (a = W/H)
could be investigated in the range 1 6 R/W 6 7 and 0.5 6W/H 6 4.

For all results shown in this work the Reynolds number is iden-
tically zero. The Weissenberg number is defined as Wi ¼ kU=W ,
where k is the relaxation time of the fluid and U/W represents a
characteristic shear rate based on the channel width W and the
bulk velocity U in the channel. A Deborah number can be defined
as De ¼ kU=R based on the ratio of the relaxation time of the fluid
and a characteristic residence time in each half loop (�R/U).

The number of full(half) loops in each geometry was fixed at
two(four): tests with more loops gave identical results. The major-
ity of data pertaining to the secondary flow will be presented at the
bend in the first half loop (location A1 in Fig. 1b). For the current
results, where the Deborah number remains always less than
one, memory effects remain small and secondary flow data at sub-
sequent loops (e.g. A3 or B1) are essentially identical to the first
loop (in the least favourable case for example when R/W = 1, W/
H = 1 and Wi = 0.6 the secondary flow strength, as measured by
the maximum spanwise velocity, differs by just 0.7% between loca-
tions A1, A3, B1 and B3).

For all of the serpentine channels the computational domain
was mapped using three orthogonal blocks, one straight inlet sec-
tion of length 10 W, one block comprising four half loops of varying
curvature and a final straight exit section also 10 W in length. The
main characteristics of the meshes are provided in Table 1.
The information in Table 1 includes the total number of cells in
the meshes (NC) together with the number of control volumes in
each direction (NX, NY and NZ) and the total number of degrees
of freedom (DOF) of the computed variables. The cell sizes are uni-
form in the y- and z-directions and in the x-direction in the second
block. In the inlet(exit) channels the cell spacing in the x-direction
decreases as the cells move towards(away) from the block contain-
ing the half-loops. It is important to note that the x, y, z coordinate
system is fixed in space but that we will refer always to the veloc-
ity component in the streamwise direction as u, in the wall normal
or transverse direction as v and the velocity in the spanwise direc-
tion (z) as w. As a consequence the streamwise velocity component
u for example is only aligned with the x-direction in the straight
inlet and outlet channels (and at locations A2, A4/B0, B2). Thus
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