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a b s t r a c t

Micro–macro simulations of polymeric solutions rely on the coupling between macroscopic conservation
equations for the fluid flow and stochastic differential equations for kinetic viscoelastic models at the
microscopic scale. In the present work we introduce a novel micro–macro numerical approach, where
the macroscopic equations are solved by a finite-volume method and the microscopic equation by a lat-
tice-Boltzmann one. The kinetic model is given by molecular analogy with a finitely extensible non-linear
elastic (FENE) dumbbell and is deterministically solved through an equivalent Fokker–Planck equation.
The key features of the proposed approach are: (i) a proper scaling and coupling between the micro lat-
tice-Boltzmann solution and the macro finite-volume one; (ii) a fast microscopic solver thanks to an
implementation for Graphic Processing Unit (GPU) and the local adaptivity of the lattice-Boltzmann
mesh; (iii) an operator-splitting algorithm for the convection of the macroscopic viscoelastic stresses
instead of the whole probability density of the dumbbell configuration. This latter feature allows the
application of the proposed method to non-homogeneous flow conditions with low memory-storage
requirements. The model optimization is achieved through an extensive analysis of the lattice-Boltzmann
solution, which finally provides control on the numerical error and on the computational time. The
resulting micro–macro model is validated against the benchmark problem of a viscoelastic flow past a
confined cylinder and the results obtained confirm the validity of the approach.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the most commonly adopted practices for the simulation
of dilute polymeric suspensions relies on macroscopic constitutive
equations for the polymeric extra stress, derived from molecular
models and solved via well-established numerical methods [1].
The advantage of this approach is the low computational cost asso-
ciated, the drawback is that some kinetic models does not have a
closed-form continuous counterpart. With regards to the finitely
extensible non-linear elastic (FENE) model for example, a rheolog-
ical law can only be derived under closure approximations, i.e.
FENE-P, FENE-LS [2]. The resulting models are then able to phe-
nomenologically describe the basic flow features but the underly-
ing theoretical assumptions can hinder the retrieval of relevant
viscoelastic phenomena.

In a more general modeling strategy, the kinetic origin of the
molecular models is retained [3]. Methods using this approach
are generally described as micro–macro models, due to the sepa-
rated solution of the micro and macroscales. Continuity and

momentum equations are solved using continuous equations
(macro-scale) and kinetic equations are solved by stochastic or
deterministic methods (micro-scale) [4]. In this framework, one
of the most popular methodologies is the CONNFFESSIT approach,
where a finite element solution of the macroscopic equations is
combined with stochastic simulations for the dumbbell configura-
tion [5]. One of the major issues concerned with this approach is
the high computational expense and the embedded statistical
noise, which can be filtered using variance reduction techniques
[6]. Another similar and commonly used approach is the Brownian
configuration field method [7]. This method already embeds effi-
cient variance reduction, as long as individual molecules are clus-
tered in continuous configuration fields according to their initial
configuration and applied force, but the computational cost of
the stochastic simulation is anyway a limit.

An alternative approach for noise reduction and faster compu-
tations consists in the solution of an equivalent Fokker–Planck
equation for the probability density of the dumbbell configuration.
However, a literature review reveals that due to the dimensionality
of the problem and the lack of efficient numerical methods to solve
the Fokker–Planck equation, little progress has been done in this
framework [4] and no method prevail. Relevant recent work about
the direct solution of the Fokker–Planck equation for complex
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flows relies on a Galerkin spectral element technique for 2D [8] and
its extension to 3D [9]. Another group of promising methods are
those that approximate the solution of the Fokker–Planck equation
reducing the dimensionality of the problem. This order-reduction
can be done a priori, like in the lattice-Fokker–Planck method
[10], on line like in the proper generalized decomposition [11] or
a posteriori like in the proper orthogonal decomposition [12]. All
these techniques aim to systematically reduce the degrees of free-
dom and therefore the computational expense.

In this work we focus on direct deterministic numerical meth-
ods, therefore no approximation occurs beyond mesh resolution.
The proposed approach relies on a previous work by Ammar [13]
about a lattice Boltzmann solution of the Fokker–Planck equation
for homogeneous flows. Recently this method has been also theo-
retically analyzed [14] and applied for the solution of a population
balance equation [15] and for the Fokker–Planck equation [16].
However, none of the previous works [13–16] deals with the cou-
pling of the kinetic solution with macroscopic fields, thus we
investigate efficient ways to exploit it in multi-scale simulations.

In the proposed micro–macro model, the macroscopic equa-
tions are solved by a finite-volume method using the commercial
solver ANSYS Fluent

�
v14.0, while the microscopic equation is

solved by a lattice-Boltzmann method. The Fokker–Planck equa-
tion is solved using an operator-splitting procedure that allows
to solve the configurational part by a GPU implementation of the
lattice Boltzmann method and the physical convection by a finite
volume method. The operator-splitting indeed allows us to trans-
port only viscoelastic stresses instead of the whole distribution
function defined in the configuration space. Consequently, algo-
rithms with low-memory requirements can be formulated.

The outline of the paper is as follows: the governing equations
for the polymeric suspension and a derivation of the stochastic
equation for the FENE dumbbell model are firstly presented; suc-
cessively, the equivalent Fokker–Planck equation is introduced
(Section 2). In Section 3, the solution and coupling strategy is de-
tailed together with the numerical methods. Section 4 comprises
the numerical analysis of the sub-grid solution, the validation of
the coupled model and its optimization. The details of the GPU
implementations and the relative coupling with the macroscopic
solver are reported in Appendix C. A brief summary of the results
obtained and an outlook on further developments concludes the
paper (Section 5).

2. Theoretical model

2.1. Hydrodynamic system

Let us consider a polymeric solution as a blend between a
Newtonian and a viscoelastic fluid. Assuming the flow to be incom-
pressible and isothermal, mass and momentum conservation
reads:

rx � v ¼ 0; ð1Þ

q
@v
@t
þ qv � ðrxvÞ ¼ �rxpþrx � r; ð2Þ

where q is the density, p the pressure, v the velocity vector and the
subscript x denotes operators in the physical space. The total stress
tensor r, embeds contributions from both the Newtonian solvent rs

and the polymeric solute rp, therefore r = rs + rp. Denoting by ls

the dynamic viscosity of the solvent, rs is given as:

rs ¼ lsðrxv þ ðrxvÞyÞ ¼ ls _c; ð3Þ

being _c the rate of strain tensor. In order to close the hydrodynamic
system, an additional material model must be solved for the visco-
elastic contribution rp.

2.2. Viscoelastic model

In the simplest micro-mechanical approach for polymer rheol-
ogy, molecular chains are modeled by two beads and a spring con-
nector, that is by a non-rigid dumbbell immersed in a fluid. A
general kinetic model can then be derived considering the equa-
tions of motion of the beads in the dumbbell, namely the equilib-
rium of inertial, frictional, Brownian and connector forces [17]. For
a jth bead located in ri, the equilibrium yields the so called Langevin
equation:

mj
d
dt

drj

dt
� v rj

� �� �
¼ fj

drj

dt
� v rj

� �� �
þ r

dWj

dt
þ Fc

j ; ð4Þ

with m being the mass of the bead, f a drag coefficient, r a coeffi-
cient for the standard Wiener process W and Fc the connector force.
Indicating with kB the Boltzmann constant and T the absolute tem-
perature, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBfT

p
from the principle of equipartition of energy

[1]. Assuming high friction regime and thus over-dumped Brownian
dynamics [18], the inertial term on the left-hand side can be
dropped and, indicating with n = r2 � r1 the end-to-end vector of a
dumbbell, yields the following (Itô) stochastic differential equation:

d
dt

n ¼ j � n� 2
f

FcðnÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
4kBT

f

s
d
dt

W; ð5Þ

where W is a standard Brownian motion ðW2 �W1Þ=
ffiffiffi
2
p

and the
symbol j has been adopted for the transpose of the velocity gradi-
ent tensor (rxv)�. The peculiarity of the dumbbell model lies in the
expression of the connector force law Fc(n). In this work we are con-
cerned with the finitely extensible non-linear elastic model, there-
fore indicating with h the spring constant and n0 a finite
extensibility parameter, the connector force reads:

FcðnÞ ¼ h

1� knk2
=n2

0

n; ð6Þ

with k � k indicating vector norm. This entropic force law, originally
proposed by Warner [19], exhibits linear behavior for small exten-
sions and the finite length n0 in the limit of an infinite force. In a sto-
chastic approach, Eq. (5) should then be stochastically solved for the
dumbbell configurations in the random process W with the spring
force law (6).

Using stochastic analysis, the ordinary differential Eq. (5) can be
associated with a partial differential equation for a probability den-
sity function (PDF), which can then be deterministically solved in-
stead of a large number of realizations for the Brownian driver. In
this case the resulting probability density function w(x,n, t) satis-
fies the Fokker–Planck equation [20]:

@w
@t
þ v � ðrxwÞ þ rn � j � n� 2

f
FcðnÞ

� �
w

� �
¼ 2kBT

f
r2

nw; ð7Þ

which is also called Smoluchowski equation in polymer science. In-
dex n on operators indicates that they act in the configuration space.
Due to its dimensionality, the solution of Eq. (7) is non-trivial and
we proceed as detailed in the next section.

3. Numerical methods

3.1. Solution strategy

In order to solve the Fokker–Planck equation directly, we con-
sider a time-splitting-like procedure similar to that proposed by
Lozinski and Chauvière [8]. Following this idea, the operators act-
ing in the configuration space are separated from those acting in
the physical space. In this way Eq. (7) can be firstly solved in the
configuration space for an intermediate distribution function wn� ,
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