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a b s t r a c t

The viscometric functions (g, N1 and N2) for non-colloidal suspensions of spheres in a Boger fluid matrix
were measured. Volume fractions (/) of 5%, 10% and 20% were investigated. The relative viscosity (gr = g/
g0) and the (positive) first normal stress difference N1 showed increases with / which were larger than
the dilute suspension theory predictions of 1 + 2.5/, indicating semi-dilute suspension behaviour.

The main interest centres on the second normal stress difference N2. The matrix fluid showed a zero
second normal stress difference, and the measurements showed that N2 was always negative for the sus-
pensions. This agrees with the dilute suspension prediction found using the Landau-Lifschitz averaging
procedure, but not with the ensemble averaging method, which predicts a positive N2. Possible causes
for this result are discussed.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Here we report the results of measuring the viscometric func-
tions (gr, N1, N2) in semi-dilute non-colloidal suspensions of
spheres in a viscoelastic Boger fluid matrix. The results are then
compared with existing predictions for the dilute case from sus-
pension theory [1–4]. The predictions are of two kinds – Koch
and Subramanian [1] and Rallison [2] used an ensemble averaging
procedure to find the average bulk stresses, while Greco et al. [3]
and Housiadas and Tanner [4] used a direct averaging procedure
based on Landau and Lifschitz’s work [5]. All four predictions mod-
elled the matrix fluid by a second-order equation [6]

r ¼ �pIþ g0Aþ ðw1 þ w2ÞA
2 � 1

2
w1B ð1Þ

where r is the total stress tensor, p is a pressure, I is the unit tensor,
g0 is the (constant) matrix viscosity and w1 and w2 are the (con-
stant) first and second normal stress coefficients. A is defined as
twice the rate of deformation tensor:

A ¼ L þ LT ð2Þ

where Lij = ovi/oxj are the components of the velocity gradient
tensor L; vi is the velocity component in the i-direction.

The second Rivlin-Ericksen tensor B is defined as [6]

B ¼ DA
Dt
þ LT Aþ AL ð3Þ

where the particle – following derivative D/Dt = o/ot + v � r.
The matrix fluid is assumed to be incompressible. In a simple

shear flow (velocity field v ¼ _cyi), the normal stress differences
N1(0) and N2(0) in the matrix fluid are given by

N1ð0Þ � rxx � ryy ¼ w1 _c2 and N2ð0Þ � ryy � rzz ¼ w2 _c2: ð4Þ

The predictions [1–4] all relate to the changes in the viscometric
functions as rigid spherical particles are added to the viscoelastic
matrix. To the first order in the volume fraction of spheres (/) the
results are as follows:

For the viscosity g(/) and the first normal stress difference
N1(/), they are given by [1–4]

gð/Þ ¼ g0ð1þ 2:5/Þ ð5Þ

and

N1ð/Þ ¼ N1ð0Þð1þ 2:5/Þ ð6Þ

respectively.
For the second normal stress difference N2(/), the predictions

are different: one finds [3,4]

N2ð/Þ ¼ N2ð0Þ 1þ 10
7
� 45

56
N1ð0Þ
N2ð0Þ

� �
/

� �
ð7Þ

and from [1,2,7]

N2ð/Þ ¼ N2ð0Þ 1þ 75
28
þ 5

56
N1ð0Þ
N2ð0Þ

� �
/

� �
ð8Þ
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There are few, if any, suitable measurements to compare with these
dilute suspension results. The work by Mall-Gleissle et al. [8] used
semi-dilute suspensions of spheres (down to 5% volume fraction)
in silicone matrices and it appears that the relation formed by com-
bining (5) and (6), which is [9]

N1ð/Þ
N1ð0Þ

¼ gr ð9Þ

is obeyed by these results even though the Weissenberg number
(Wi � k _c) is of order 1 or greater for the flows considered. It is how-
ever debatable if the second-order model should be used unless
Wi < 1.0. The increase of the viscosity with concentration is more
rapid than Eq. (5) suggests. Unfortunately the data on the second
normal stress difference are too scattered to distinguish between
(7) and (8), although N2 was always negative. Therefore new exper-
iments, following the suggestion of Rallison [2], have been made
and are reported here.

2. Experiments

It is necessary to determine N2 accurately, and the best choice
appears to be the semi-circular open channel [10,11] where N2

can be measured to around 0.1 Pa accuracy. In this test, fluid flows
down an inclined semi-circular trough under gravity and the free
surface deflection is viewed optically. Fig. 1 shows the cross-sec-
tion of the trough and the elevation h(u) that is measured via the
reflection of a millimetre scale in the free surface. Once h has been
determined, then the second normal stress difference can be found
[6,10,11] from the formula

�N2 ¼
1
u

Z u

0
xdQ ð10Þ

where

QðxÞ ¼ qghðxÞ cos bþ cs

q�
ð11Þ

and q is the fluid density, gcos b is the component of the gravita-
tional acceleration (g) normal to the tube axis, b is the angle of
the tube axis to the horizontal (here b was 30� for all tests), cs is
the surface tension coefficient (here taken as 0.07 Pa m) and q� is
the radius of curvature of the free surface (Fig. 1). The shear stress
(s) in the tube increases linearly from the centreline to the tube
wall, and has the magnitude

s � 1
2
qgR sin b: ð12Þ

There is a small correction of O(hm) to Eq. (12) due to the movement
of the free surface (shaded area S in Fig. 1) [11] which has been ta-
ken into account in the data reduction. Note that if h > 0, then
N2 < 0; when h = 0, then q� is very large, and N2 = 0.

We used 40 lm diameter PMMA spheres from MICROBEADS™
as particles with a density of 1.2 g/ml, and the matrix fluid was a
mixture of corn syrup (by weight 79.42%), glycerin (19.8%), water
(0.75%) and a small amount (0.03%) of PAA gave it the needed
non-Newtonian properties. The mixture is a Boger fluid [12] with
a nearly-constant viscosity and a density of 1.352 g/ml. The Péclet
number (Pe) is large (>108) and so the suspensions are non-
colloidal.

From the trough experiment (Fig. 2), no surface deflection with
the matrix fluid was detected, indicating that N2(0) � 0 for the ma-
trix. Hence the matrix behaves as a Boger fluid with N2(0) = 0. This
is important because if N2(0) = 0, then the two results (7) and (8)
reduce to the Koch-Rallison [1,2,7] result

N2ð/Þ ¼ þ
5

56
N1ð0Þ/ ð13Þ

and the Greco-Housiadas result [3,4]

N2ð/Þ ¼ �
45
56

N1ð0Þ/: ð14Þ

Hence there is a difference in sign between these results – a positive
N2 is predicted for one case and a negative N2 for the other. These
correspond respectively to a depression of the surface (positive
N2) and an arching up of the surface (negative N2) [6,9,10], if
N1(0) is positive. A parallel-plate rheometer (Paar Physica
MCR301) was used to find N1 � N2 and the relative viscosity g(/)/
g0. The standard methodology for the deduction of N1 � N2 and
the viscosity from the measured normal trust and torque data is
set out in references [6] and [11]. With the parallel-plate system
we have, since N2 = 0 here

N1 ¼ f 2þ d log f
d log _c0

� �
ð15Þ

where f = F/pR2. Here F is the normal thrust on the plates, radius R,
and _c0 is the shear rate at the rim. The viscosity follows from

gð _c0Þ ¼
m
_c0

3þ log m
log _c0

� �
ð16Þ

where m = M/2pR3; here M is the torque on the plates. The results
for the matrix are shown in Fig. 3. The matrix viscosity varied
slightly over the range of shear stresses encountered in the trough
(up to about 40 Pa); there is about a 6% reduction at _c ¼ 35 s�1 from
the zero-shear rate viscosity (2.22 Pa s), and the average viscosity is

Fig. 1. Showing the definitions used to define the surface profile in the open trough
cross-section. If hm is positive as shown, then N2 is negative.

Fig. 2. A snapshot shows that the matrix fluid surface is flat in the tube channel
flow, implying that N2 � 0 for this material.
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