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a b s t r a c t

The transient electro-osmotic flow of viscoelastic fluids in a narrow capillary tube is examined. With the
help of integral transform method, analytical expressions are derived for the electric potential and tran-
sient velocity profile by solving the linearized Poisson–Boltzmann equation and the Navier–Stokes equa-
tion. It is shown that the distribution and establishment of the velocity consists of two parts, the steady
part and the unsteady one. The results of classical fluid, i.e., Newtonian fluid and those of Maxwell fluid
and the second grade fluid can be obtained as the special cases of the results in present study. The effects
of relaxation time and retardation time on the velocity profiles are analyzed numerically. It is pointed out
that the electro-osmotic flow of viscoelastic fluids is more difficult to achieve the steady state.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

With the development of microfluidic devices and their appli-
cations in microelectromechanical system and microbiological
sensors [1–3], the research field of electro-osmosis (EO) has be-
come very attractive. Recently, some researchers [4–6] pointed
out that the micelle structure of polymer electrolyte membranes
(PEMs) might consist of only cylindrical nano-channels, which
facilitate water and proton transport, rather than large water
pore clusters connected by smaller nano-channels as in Gierke’s
model. This raises the problem that how to model the fluids
electro-osmotic flow in a straight pipe of circular cross section.

Most of the theoretical researches on electro-osmotic flow are
limited to the fully developed steady-state flow [7–11]. An elec-
tro-osmotic flow problem in an infinite cylindrical pore with a
uniform surface charge density has been studied analytically
by Berg and Ladipo [12], the results revealed the distribution
of the electric potential and the counter-ions (protons), the
velocity profile of the water flow and its associated total flux,
as well as the protonic current, conductivity and water drag.
Chang [13] presented a theoretical study on the transient
electro-osmotic flow through a cylindrical microcapillary

containing a salt-free medium for both constant surface charge
density and constant surface potential, the exact solutions for
the electric potential distribution and the transient electro-
osmotic flow velocity are derived by solving the nonlinear
Poisson–Boltzmann equation and the Navier–Stokes equation.
With the application of a stepwise voltage, Mishchuk and
González-Caballero studied a theoretical model of electro-
osmotic flow in a wide capillary [14], both periodical and aperi-
odical flow regimes were studied with arbitrary pulse/pulse or
pulse/pause durations and amplitudes.

On the other hand, microfluidic devices are usually used to
analyze biofluids, which are often solutions of long chain mole-
cules and their behavior are very different from that of Newto-
nian fluid, such as memory effects, normal stress effect, and
yield stress. These fluids cannot be treated as Newtonian fluids.
Many researchers have recently focused on non-Newtonian
behavior of biofluids in electrokinetically driven microflows.
The first research of non-Newtonian effects to electro-osmotic
flow was done by Das and Chakraborty [15] and Chakraborty
[16], in their studies, the biofluids were treated as power-law
fluids, and the analytical solution, describing the transport char-
acteristics of a non-Newtonian fluid flow in a rectangular micro-
channel, was obtained under the sole influence of electrokinetic
effects. For the same non-Newtonian fluid model, Zhao and Yang
[17,18] obtained the general Smoluchowski velocity for electro-
osmosis over a surface with arbitrary zeta potentials. Park
and Lee [19] derived a semi-analytical expression for the
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Helmholtz–Smoluchowski velocity under pure electroosmosis
conditions for the full Phan–Thien–Tanner (PTT) constitutive
equation, and they used a finite volume method to calculate
numerically the flow of the full PTT model in a rectangular duct
under the action of electroosmosis and a pressure gradient [20].
With the help of Fourier transform, Bandopadhyay and
Chakraborty [21] investigated the dynamical interplay between
interfacial electrokinetics and a combined dissipative and elastic
behavior of ow in narrow connements. Recently, they addressed
the implications of finite sizes of the ionic species on electroos-
motic transport through in narrow confinements in the case of a
counterion-only solution, and pointed out that the electroos-
motic mobility is dependent on both the size of the channel
and the size of the ions [22].

In present study, the non-Newtonian behavior of biofluids is
modelled by the Oldroyd-B constitutive equation. The purpose
of this paper is to present the analytical solution of
unsteady electro-osmotic flow of Oldroyd-B fluids in a cylindrical
capillary.

2. Governing equations

2.1. Constitutive equation of Oldroyd-B fluid

The continuity equation for an incompressible fluid is

r � V ¼ 0; ð1Þ

and the general Cauchy momentum equation

q
@V
@t
þ ðV � rÞV

� �
¼ r � rþ F; ð2Þ

here V is the velocity vector, q is the fluid density, r is the Cauchy
stress tensor, F is the extemal body force vector, andr is the gradi-
ent operator.

The Cauchy stress tensor r for Oldroyd-B fluid is

r ¼ �pIþ s; 1þ k1
D
Dt

� �
s ¼ l 1þ k2

D
Dt

� �
A1; ð3Þ

A1 ¼ rV þ ðrVÞT ; ð4Þ
Ds
Dt
¼ @s
@t
þ ðV � rÞs� ðrVÞ � s� s � ðrVÞT ; ð5Þ

where s is extra stress tensor, I is the unit tensor, p is the pressure
and the superscript T denotes the tensor transpose, k1 and k2 are
relaxation time and retardation time of the Oldroyd-B fluid,
respectively.

2.2. Mathematical model of the flow

Consider the electro-osmotic flow of Oldroyd-B fluid of dielec-
tric constant e, at rest at time t 6 0, contained in a straight pipe
of circular cross section and radius R. It is assumed that the pipe
wall is uniformly charged with a zeta potential, ww. When an
external electric field E0 is imposed along the axial direction, the
fluid in the pipe sets in motion due to electro-osmosis.

All quantities are referred to cylindrical polar coordinates (r, h,
z), where r is measured from the axis of the pipe and z along it. If
we assume a velocity distribution of the form

ð0;0;uðr; tÞÞ; 0 6 r 6 R; t > 0; ð6Þ

the initial condition is given by

uðr;0Þ ¼ 0; 0 6 r 6 R; ð7Þ

and the equation of continuity (1) is satisfied automatically.

According to the theory of electrostatics, the net charge density
qe is expressed by a potential distribution w, which is given by the
Poison equation,

r2w ¼ 1
r
@

@r
r
@w
@r

� �
þ 1

r2

@2w

@h2 þ
@2w
@z2 ¼ �

qe

e
: ð8Þ

The boundary condition is that the zeta potential ww is given on the
wall of the pipe,

wðR; hÞ ¼ ww;
@w
@r

����
r¼0
¼ 0: ð9Þ

In present research, we assume that the charge distribution in
the Debye layer is not affected by time, i.e., the wall of the pipe
has constant electric potential E0. Then the relevant equation of
motion reduces to

q
@u
@t
¼ 1

r
@

@r
ðrsrzÞ � qeE0; ð10Þ

which has the following initial and boundary conditions

uðr;0Þ ¼ @u
@t

����
t¼0
¼ 0; ð11Þ

uðr; tÞ ¼ 0; r ¼ R: ð12Þ

3. Exact solution for the model

Neglecting all non-electrostatic interactions between the ions
including the ionic finite size, i.e., here we assume that the ions
are point sized, for small values of electrical potential w of the elec-
trical double layer (EDL), the Debye–Hückel approximation can be
used successfully, which means physically that the electrical po-
tential is small compared with the thermal energy of the charged
species. So we have the linearized charge density

qe ¼ �
2z2

ve2n0w
kBT

; ð13Þ

where zm is the valence of ions, e is the fundamental charge, kB is the
Boltzmann constant, T is the absolute temperature.

With the help of the Debye–Hückel approximation [23,24], Eq.
(8) can be linearized to

1
r
@

@r
r
@w
@r

� �
¼ j2w: ð14Þ

Then the equation of motion (10) becomes

q
@u
@t
¼ 1

r
@

@r
ðrsrzÞ � j2ewE0; ð15Þ

here j ¼ ð2z2
me2n0=ekBTÞ1=2 is the Debye–Hückel parameter and j�1

means the thickness of EDL.
Choosing the cylindrical coordinate (r, h, z), the constitutive

equation for Oldroyd-B fluid can be expressed as

1þ k1
@

@t

� �
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@

@t

� �
@u
@r
: ð16Þ

Eliminating srz from (15) and (16) yields

1þ k1
@

@t

� �
q
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Introducing the below listed non-dimensional parameters,

w� ¼ w
ww

; u� ¼ u
us
; r� ¼ r

R
; t� ¼ l

R2q
t; us ¼ �

ewwE0

l
; ð18Þ
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