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a  b  s  t  r  a  c  t

A  differentially  weighted  operator  splitting  Monte  Carlo  (DWOSMC)  method  is developed  to  solve com-
plex  aerosol  dynamic  processes  by  coupling  the  differentially  weighted  Monte  Carlo  method  and  the
operator  splitting  technique.  This method  is validated  by analytical  solutions  and  a  sectional  method  in
different aerosol  dynamic  processes.  It is first validated  in coagulation  and  condensation  processes,  and
nucleation  and  coagulation  processes,  and  then  validated  through  simultaneous  nucleation,  coagulation,
and  condensation  processes.  The  results  show  that the  DWOSMC  method  is a computationally  efficient
and  quantitatively  accurate  method  for simulating  complex  aerosol  dynamic  processes.

©  2017  Chinese  Society  of  Particuology  and  Institute  of Process  Engineering,  Chinese  Academy  of
Sciences.  Published  by  Elsevier  B.V.  All  rights  reserved.

Introduction

The problem of air pollution has become increasingly severe in
recent years and contributes to several types of acute and chronic
diseases in human beings, for example, lung cancer, asthma, and
leukemia. Therefore, the study of atmospheric science has become
increasingly important. The air pollution indices (i.e., PM1, PM2.5,
and PM10) refer to the diameters of particulate matters (PMs) in
the air. The US Environmental Protection Agency has listed the
reduction of PM2.5 emissions as an important task to control air
pollution (Raman & Fox, 2016). Ultrafine, submicron, and fine par-
ticles suspended in the air are also called aerosols (Friedlander,
2000; Gelbard, 1979). Considering their impact on the climate and
health, it is significant to understand the evolution and distribu-
tion of aerosol particles (Tie, 2015). Therefore, increasing numbers
of researchers have studied aerosol dynamics in recent decades.
The research into aerosol dynamics is highly related to polymeriza-
tion processes, dispersion of aerosols in the atmosphere, chemical
reactions involving surface growth, precipitation of particles, and
processes for the production of pharmaceuticals (Madadi-Kandjani
& Passalacqua, 2015). In addition to performing experiments to
describe aerosol dynamics and chemical reactions, numerical mod-
eling has become a very useful tool to predict and describe aerosol
dynamic processes, including nucleation, coagulation, and conden-
sation (Chan, Lin, Zhou, & Chan, 2006; Liffman, 1992; Qamar &
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Warnecke, 2007; Zhou & Chan, 2011). Among different types of
developed numerical models, the most popular ones are the sec-
tional method (SM) (Dergaoui, Sartelet, Debry, & Seigneur, 2013;
Gelbard, Fitzgerald, & Hoppel, 1998), method of moments (MOM)
(Chan, Liu, & Chan, 2010; Liu, He, & Chan, 2011; McGraw, 1997; Yu
& Chan, 2015; Yu, Lin, Cao, & Seipenbusch, 2015), and Monte Carlo
(MC) method (Fede, Simonin, & Villedieu, 2015; He, Zhao, Wang, &
Zheng, 2015; Zhang & You, 2015).

The SM is a type of discrete aerosol size distribution approach.
In a sectional representation, the size of the particles is divided
into a certain number of sections, where all the particles in one
section have the same component composition (Chen, Lin, & Yu,
2014; Lu, 2005). For the MOM,  the governing equation of the par-
ticles is transformed into a set of ordinary differential equations
regarding the moments (Settumba & Garrick, 2004). Both the SM
and MOM  are deterministic methods, effective tools to describe or
predict the evolution of aerosol particle size distribution (PSD), and
technically easy to couple with Eulerian–Eulerian models of mul-
tiphase flows (Vlieghe, Coufort-Saudejaud, Liné, & Frances, 2016;
Zhang & You, 2015). However, these two  methods have advan-
tages and disadvantages in terms of accuracy and efficiency (Wei
& Kruis, 2013; Chen et al., 2014). For example, the SM tends to be
more accurate; however, the sectional representations may  lead
to complicated algorithms. The MOM  is relatively efficient; how-
ever, the main difficulty is obtaining the closure of the moment
equations. Some researchers (Lee, Chen, & Gieseke, 1984; Pratsinis,
1988) achieved the closure of the moment equations by making a
prior assumption regarding the initial form of the PSD, and other
researchers have developed methods to achieve the closure of the
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Nomenclature

d Average particle diameter (m)
D Diffusion coefficient (m2/s)
i, j Particle label
I Condensation kernel (m3/s)
J Nucleation kernel (s−1)
K Coagulation kernel (m3/s)
kB Boltzmann constant (J/K)
Kn Knudsen number
M2 Second moment
n Number density of aerosol particles
N Particle number concentration during the simula-

tion interval
N0 Initial particle number concentration
Np Number of simulation particles
r Random number
t Time (s)
TK Temperature (K)
�t  Time step (s)
ıt Time step in DWOSMC simulation (s)
�u Velocity of gas (m/s)
v,ṽ Particle volume (m3)
Vs Volume of the aerosol system in simulation (m3)
V Total particle volume during the simulation interval

(m3)
V0 Initial total volume of aerosol particles (m3)
wi Weight of the simulation particle
X Total process
Xd Deterministic process
Xs Stochastic process

Subscripts
coag Coagulation
cond Condensation
d Deterministic
nucl Nucleation
i,j,k Section number
i,j,m,n Index of simulation particle
p Simulation particle
s Stochastic

Superscripts
m Step number

Greek letters
˛  Correction factor
ε Relative error
� Normalized computational time

Acromyms
DWOSMC Differentially weighted operator splitting Monte

Carlo
GDE General dynamic equation
MC  Monte Carlo
MOM  Method of moment
PBE Population balance equation
SM Sectional method

moment equations without a prior requirement for the PSD (Chan
et al., 2010; Frenklach, 2002; Yu & Chan, 2015; Yu, Lin, & Chan,
2008).

In addition to the SM and MOM,  the MC  method has become
popular because it has the advantage of stochastic characteristics

(Hussain, Kumar, & Tsotsas, 2015; Kruis, Wei, van der Zwaag, &
Haep, 2012; Sun, Axelbaum, & Huertas, 2004). The MC method is a
stochastic algorithm that is based on the probabilities of different
outcomes in a process that could not be easily predicted because of
their randomness. Instead of directly solving the general dynamic
equation (GDE), the MC  method imitates the formation, movement,
and dynamic behavior of simulation particles based on the happen-
ing probabilities of the behavior (Bird, 1976; Liu & Chan, 2016).

Metropolis and Ulam (1949) first proposed the MC  method
to apply the laws of probability and statistics to the natural sci-
ences. Bird (1963, 1976, 1994) developed the direct simulation
MC method to model rarefied gas flows. Different MC  methods
have been proposed to study aerosol dynamics, which can gen-
erally be classified as the time-driven MC  method (Liffman, 1992;
Liu & Chan, 2017b) and event-driven MC  method (Mendoza-Coto,
Díaz-Méndez, & Pupillo, 2016; Zhao & Zheng, 2009), with respect
to the advancement method of the algorithm, or constant-number
MC  method (Lin, Lee, & Matsoukas, 2002; Liu & Chan, 2016) and
constant-volume MC  method (Yamakov, 2016; Zhao & Zheng,
2009), with respect to the variation of the computational domain.
Kostoglou and Konstandopoulos (2001) identified the characteris-
tics of different MC  approaches and classifications. Weighted MC
methods (Boyd, 1996; Liu & Chan, 2017a; Zhao et al., 2010) have
also been proposed to increase the resolution and efficiency of the
MC method.

Because MC  methods simulate directly the dynamic behavior of
particles, they can approximate the population balance equation
(PBE) solution through a large number of random samplings of the
particle system. The stochastic nature of the MC  method adapts
itself naturally to stochastic processes. It is also relatively simple
to implement the MC  algorithm in multi-dimensional, multi-scale,
and polydispersed systems (Xu, Zhao, & Zheng, 2014). Kostoglou
and Konstandopoulos (2001), and Kostoglou, Konstandopoulos,
and Friedlander (2006) successfully used the MC  method to solve
the bivariate coagulation equation. Generally, a classical MC simu-
lation consists of the following steps:

1. Define a probabilistic process that can describe the problem;
2. Generate inputs randomly from the known probability distribu-

tion over the computational domain;
3. Perform the computation on the established model to obtain

random solutions; and
4. Repeat the simulation and average the results.

Compared with other methods, MC  methods are increasingly
preferred because of the following advantages (Wei  & Kruis, 2013).

(a) The stochastic nature of the MC  method makes it ideally suit-
able to manage a stochastic event.

(b) The MC  method can solve the closure problem of the GDE.
(c) Each simulation particle can have a unique size, composition,

and morphology, that is, any information about the particles
can be obtained.

(d) The MC  method is robust and simple to code numerically.

In MC  methods, simulation particles are used to represent the
large number of real particles, and thus introduce the notion of
“weighted simulation particles.” In previous studies, the same
weight for different simulation particles was used (Boyd, 1996;
Liffman, 1992; Fox, 2003; Smith & Matsoukas, 1998; Zhao et al.,
2010). For reducing statistical noise, Zhao and Zheng (2011) and
Zhao, Zheng, and Xu (2005) developed a differentially weighted
MC (DWMC) method, which proved to be efficient and practical
for simulating the coagulation process of aerosol particles. How-
ever, the deterministic method is more efficient for simulating the
nucleation and condensation processes. Taking advantage of both
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