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a  b  s  t  r  a  c  t

Flow  characterization  of high-pressure  dense-phase  pneumatic  conveying  of coal  powder  is  not fully
understood.  To  further  reveal  the  dynamic  behavior  of coal  particles  in  dense-phase  pneumatic  conveying
pipelines,  a  method  for the scale  decomposition  of particle  motion  based  on  empirical  mode  decompo-
sition  and  Hurst  analysis  of  experimental  electrostatic  signals  is  reported.  This allows  the  multi-scale
motion  characteristics  of  single  coal  particles  and  particle  clusters  to be  determined.  Micro-,  meso-,  and
macro-scale  subsets  were  reconstructed,  which  reflected  the different  behaviors  of  the  coal  particles:
specifically,  dynamic  features  of the  micro-scale  subset  represented  features  of  single  particle  collisions
and frictional  interactions;  dual  fractal  characteristics  of  the  meso-scale  subset  described  the  motion  of
coal particle  clusters;  and  features  of the  macro-scale  subset  reflected  persistent  dynamic  behavior  of  the
entire  pneumatic  conveying  system.  Motion  behavior  of single  particles  and  particle  clusters  could  be
respectively  investigated  by  considering  the  relative  energies  of the micro-  and meso-scale  contributions
to  the electrostatic  signal.  This  was  verified  both  by  theoretical  analysis  and  experiment.

©  2017  Chinese  Society  of  Particuology  and  Institute  of Process  Engineering,  Chinese  Academy  of
Sciences.  Published  by  Elsevier  B.V.  All  rights  reserved.

Introduction

High-pressure dense-phase pneumatic conveying is a critical
technique in entrained-flow pulverized coal gasification systems.
In-depth insight into the motion of coal particles in the dense-
phase gas–solid two-phase flow in pneumatic transport pipelines
is significant for their optimized design and operation. Such knowl-
edge is also important in the context of research into gas–solid
two-phase flow.

The motion of pulverized particles in a dense-phase pneumatic
conveying pipeline is an unsteady and complex non-linear dynam-
ical process that has been studied by many non-linear methods,
including fractal theory, information entropy, and chaos analysis
(Cao, Wang, Liu, & Yang, 2009; Liang et al., 2007; Lu et al., 2013;
Mittal, Mallick, & Wypych, 2014; Wu,  Briens, & Zhu, 2006). These
studies have made significant contributions to understanding par-
ticle motion in these gas–solid two-phase flow systems. It should,
however, be noted that all of these studies were performed at a
single scale.
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Particles in a dense-phase gas–solid two-phase flow exist in
several different states: as individual particles; particle clusters in
the dense region; and particle clusters in the dilute region. To link
these particle states with features of their dynamic movement, it is
noted that individual particles and particle clusters have individual
dynamic movement behaviors, which cannot be revealed through
investigations at only a single scale. Furthermore, the dynamic fea-
tures of dense-phase gas–solid two-phase flow are known to be
multi-scale (Lu et al., 2013; Xu, Liang, Zhou, & Wang, 2010). There
are three basic scales: micro-scale (representing dynamic behavior
of discrete individual particles); meso-scale (representing dynamic
behavior of clusters, involving interaction between dense-phase
clusters and the dilute-phase broth); and macro-scale (represent-
ing dynamic behavior of the global gas–solid flow motion) (Li &
Kwauk, 2003).

Various widely used analysis methods can reveal the multi-
scale characteristics of signals. Many studies have shown that
multi-scale dynamic behavior can be studied by wavelet trans-
forms and empirical mode decomposition (EMD) (Zhao & Yang,
2003). For the application of the former, it is necessary to select
the mother wavelet a priori; the resulting lack of self-adaptability
of this method somewhat limits its ability to analyze non-linear
and non-stationary signals. In contrast, EMD, as proposed by Huang
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et al. (1998), can be used to adaptively decompose signals based on
their intrinsic features and is more suitable for analyzing such sig-
nals. EMD  has therefore been used to decompose the electrostatic
and pressure signals of dense-phase pneumatic conveying systems
(Briongos, Aragón, & Palancar, 2006; Xu et al., 2010).

In this research, a method for the scale decomposition of par-
ticle motion based on EMD  and Hurst analysis is proposed. EMD
was adopted to analyze the time–frequency characteristics of par-
ticle motion; the Hurst analysis was then applied to evaluate the
fractal characteristics of the resulting time–frequency components.
The Hurst exponents were calculated to analyze the persistence
or stochastics of these components. These time–frequency com-
ponents, which represented stochastic tendencies, dual fractal
structures, and strongly persistent tendencies, were then recon-
structed into micro-, meso-, and macro-scale subsets, respectively.
Finally, parameters related to the behavioral characteristics of these
three scales were calculated to analyze individual dynamic move-
ment behavior of single particles and particle clusters.

Particle charging in a pneumatic conveying pipeline is a compre-
hensive result of particle motion, so the electrostatic fluctuations
obtained from gas–solid two-phase flow contain rich multi-scale
information on particle movement. In this work, the three scales
of particle motion were subjected to EMD  and Hurst analysis to
obtain the electrostatic fluctuations of the dense-phase gas–solid
two-phase flow in a conveying pipeline. Theoretical and experi-
mental analysis then verified that the relative energy contributions
of the meso- and macro-scale subsets could be taken as the respec-
tive eigenvalues to investigate the movement behavior of single
coal particles and particle clusters.

Signal processing methods

Empirical mode decomposition

EMD  is based on the local characteristic time scale of the data
and is applicable to non-linear and non-stationary processes. The
purpose of EMD  is to obtain the intrinsic mode functions (IMFs)
that characterize the internal vibration modes of the data. Each
IMF  satisfies two conditions: (1) in the entire data set, the numbers
of extrema and zero crossings must either be equal or differ, at
most, by one; (2) at any point, the mean value of the envelopes
defined by the local maxima and minima is zero. According to the
above definition, the decomposition of the data X(t) is carried out
as follows (Huang et al., 1998).

First, the extrema of the data are identified and connected by
a cubic spline to give the upper envelope. The same procedure is
followed for the local minima to determine the lower envelope. All
data should be contained within the upper and lower envelopes.
The mean of the upper and low envelope values is denoted as
m1. The difference (h1) between the data X(t) and m1 is the first
component:

X(t) − m1 = h1. (1)

Ideally, if h1 is an IMF, then h11 is the first component of X(t);
however, if h1 is not an IMF, h1 is treated as a data point:

h1 − m11 = h11. (2)

This sifting procedure is repeated k times until h1k is an IMF, i.e.:

h1(k−1) − m1k = h1k. (3)

If c1 is designated as c1 = h1k, then c1 is separated from X(t) and
Eq. (4) can be obtained:

X(t) − c1 = r1, (4)

where r1 is treated as the data. The above procedures are repeated
for all subsequent rj (j = 1, . . .,  n) and Eq. (5) can be obtained:

r1 − c2 = r2, ...,rn−1 − cn= rn. (5)

This shifting process can be stopped when rn is a monotonic
function. By summing Eqs. (4) and (5), the final decomposition
results of the data X(t) can be expressed as:

X(t) =
n∑
i=1

ci + rn. (6)

Hurst analysis

Hurst analysis, also known as R/S analysis and originally pro-
posed by Hurst (1951), can be used to estimate the Hurst exponent
H for a non-linear time series, which can then be used to analyze
the stochastic behaviors of the signal. In this work, Hurst analysis
was used to characterize the behaviors of different IMF  components
after EMD. For a given discrete time series, the Hurst exponent was
calculated using the following steps: a time series of length of M
was divided into W subseries, i.e., WN  = M.  The subseries are repre-
sented as Iw (w = 1, 2, . . .,  W),  where the kth item in Iw is designated
as xk,w (k = 1, 2,. . .,  N) and N is the time range of a subseries.

The statistical parameters of the subseries Iw (w = 1, 2, . . .,  W)
can be calculated by:

ew = 1
N

N∑
k=1

xk,w w = 1, 2, . . .,  W ;  (7)

Sw =
[

1
N

N∑
k=1

(xk,w − ew)2

]1⁄2

; (8)

yk,w =
k∑
i=1

(xi,w − ew) k = 1, 2, . . .,  N; (9)

Rw = max
1≤k≤N

{
yk,w

}
− min

1≤k≤N

{
yk,w

}
; (10)

where ew and Sw are the mean and standard deviation of the sub-
series Iw , respectively; yk,w is the cumulative time series of the
subseries Iw; Rw is the range of Iw .

The mean value (R/S)N of the rescaled range for all subseries can
be expressed as:

(R/S)N = 1
W

W∑
w=1

(Rw/Sw). (11)

To compare different time series, Hurst established the follow-
ing relation:

R(�)/S(�) ∝ �H, (12)

or

ln
(
R(�)/S(�)

)
∝ H ln �, (13)

where N = �. The value of H can be obtained by linear regression of
Eq. (13).

H varies between 0 and 1. A Hurst exponent equal to 0.5 (H = 0.5)
indicates that the series under examination behaves in a manner
consistent with random-walk theory; a Hurst exponent greater
than 0.5 indicates persistence, while an exponent of less than 0.5
means anti-persistence. For a persistent data set, if the trend or
behavior in the data set is increasing or decreasing over a certain
unit interval of time, it will continue to increase or decrease over
such an interval.
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