ARTICLE IN PRESS

Particuology xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Particuology

journal homepage: www.elsevier.com/locate/partic

Short communication

A grading parameter for evaluating the grading-dependence of the shear stiffness of granular aggregates

Yifei Sun*, Yang Shen, Chen Chen

Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Jiangsu Research Center for Geotechnical Engineering Technology, Hohai University, Nanjing 210098, China

ARTICLE INFO

Article history: Received 4 March 2017 Received in revised form 8 April 2017 Accepted 1 May 2017 Available online xxx

Keywords: Shear stiffness Grading Coefficient of uniformity Particle size

Introduction

ABSTRACT

To capture the grading-dependence of the shear stiffness of heterogeneous granular aggregates, a new grading parameter that considered the size distribution of the entire aggregates was developed. Both the coefficient of uniformity and median particle size decreased with increasing the grading parameter. A general increase of the shear stiffness with increasing the grading parameter was observed. Comparison with experimental results revealed that the proposed grading parameter had a stronger correlation with the material constants of Hardin's stiffness formula than the coefficient of uniformity, which is a traditional grading parameter.

© 2017 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Granular aggregates are highly heterogeneous materials that consist of particles and voids. The small-strain shear stiffness (G_0) of granular aggregates is usually complex and grading-dependent. A number of studies have been conducted to determine the dependence of the shear stiffness of different granular aggregates on material grading (Bartake & Singh, 2007; Iwasaki & Tatsuoka, 1977; Payan, Senetakis, Khoshghalb, & Khalili, 2017; Suits, Sheahan, Patel, Bartake, & Singh, 2009; Wichtmann & Triantafyllidis, 2009, 2014; Yang & Gu, 2013). The gradation is typically represented by the coefficient of uniformity (C_u) and median particle size (d_{50}) (Enomoto, 2016; Payan, Khoshghalb, Senetakis, & Khalili, 2016). A decrease of G_0 with an increase in C_u has generally been observed. However, the influence of d_{50} on G_0 has not been determined conclusively. A decrease of G₀ with increasing particle size was found in quartz sand (Suits et al., 2009) and glass beads (Bartake & Singh, 2007), while an increase of G_0 with increasing particle size was observed in gravelly soils (Hardin & Kalinski, 2005). Moreover, a G₀ independent of particle size was reported by Yang and Gu (2013). Therefore, expressions for the shear stiffness of soils with varying gradations typically incorporate the effect of C_u (Enomoto, 2016; Payan et al., 2016; Wichtmann & Triantafyllidis, 2009). For instance, Payan et al. (2016) modified the well-known Hardin's formula (Hardin &

* Corresponding author. *E-mail addresses:* sunny@hhu.edu.cn, sunnyhhu@gmail.com (Y. Sun).

http://dx.doi.org/10.1016/j.partic.2017.05.006

Richart, 1963) by taking into account the effect of C_u . Menq (2003) suggested the use of both C_u and d_{50} when calculating the shear stiffness. Nevertheless, neither C_u nor d_{50} can fully characterise the grade without other parameters such as the minimum (d_m) and maximum (d_M) particle sizes and the coefficient of curvature (C_c). Therefore, in this study, a new grading parameter (C_g) that considers the whole shape of the material grading by modifying the parallel-column model proposed by Liang and Li (2014) at small strain (<10⁻³) was developed. The proposed parameter was validated with the results from resonant column tests of quartz sands with different grades (Wichtmann & Triantafyllidis, 2009). Comparisons between C_g , C_u , d_{50} , and the corresponding test results were made, and correlations between C_g , C_u , and their corresponding material constants from Hardin's formula for calculating the shear stiffness were also analysed.

A new grading parameter

The varied interaction of the discrete particles in a column causes different resilient responses of aggregates with different particle size distributions (PSDs). Following Liang and Li (2014), stress at small strain was considered to propagate through the column-like force chains formed by the discrete particles within a representative cubic element. The elastic modulus (E_0) of the parallel-column was the sum of all particle columns in the array. Each particle column consisted of *N* particles with random sizes (d_i) from bottom to top, where the size indicates the aggregate diam-

1674-2001/© 2017 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

Please cite this article in press as: Sun, Y., et al. A grading parameter for evaluating the grading-dependence of the shear stiffness of granular aggregates. *Particuology* (2017), http://dx.doi.org/10.1016/j.partic.2017.05.006

2

ARTICLE IN PRESS

Y. Sun et al. / Particuology xxx (2017) xxx-xxx

eter according to ASTM C136 (2006). Therefore, the height of the column is formulated as (Liang & Li, 2014):

$$L = \sum_{i=1}^{N} d_i. \tag{1}$$

As the number of particles is large for a given element, Eq. (1) is expressed in an integral form by using the sample grading as:

$$L = \int_{d_{\rm m}}^{d_{\rm M}} N df(d) \delta d, \tag{2}$$

where f(d) is the density distribution function of the current particle size (d), and the subscripts m and M denote the minimum and maximum aggregate sizes in the element, respectively. The number of particle columns in a cubic element is given by:

$$m \approx \frac{D^2}{(1+e)\int_{d_m}^{d_M} \frac{\pi d^2}{4} f(d)\delta d},$$
(3)

where *e* and *D* are the void ratio and size of the cubic element, respectively. Assuming a compressive loading condition, resilient deformation is attributed to the movement of particles in the stress-carrying column. The overall compressive displacement (*U*) of the column caused by the external normal force Δ can be regarded as the sum of the normal displacements $(u_{i-1,i}^n)$ of all the particle columns in series:

$$U = \sum_{i=2}^{N} u_{i-1,i}^{n}.$$
 (4)

Note that the vertical displacement U was assumed to be the same for all the parallel particle columns. By using the elastic law of deformation, Eq. (4) can be rewritten as:

$$\frac{\Delta}{K} = \sum_{i=2}^{N} \frac{f_{i-1,i}^{n}}{k_{i-1,i}^{n}},$$
(5)

where *K* is the stiffness of the overall particle column, and $f_{i-1,i}^n$ denotes the contact force between two interacting particles, which is the same at each contact point, i.e., $\Delta = f_{i-1,i}^n$ (i = 2, 3, ..., N). A linear contact force model was used to model the normal contact stiffness ($k_{i-1,i}^n$) between two adjacent particles (i.e., particles denoted by i-1 and i),

$$\frac{1}{k_{i-1,i}^n} = \frac{1}{E} \left(\frac{1}{d_{i-1}} + \frac{1}{d_i} \right),$$
(6)

where d_i denotes the particle size, $E = \lambda(\sigma/p_a)^{\vartheta}$ is the pressuredependent characteristic modulus of the material, σ is the applied stress, λ and ϑ are model parameters, and p_a is the atmospheric pressure for normalisation. Therefore, Eq. (6) can be rewritten as:

$$\frac{1}{K} = \frac{1}{E} \left(\sum_{i=1}^{N-1} \frac{1}{d_i} + \sum_{i=2}^{N} \frac{1}{d_i} \right).$$
(7)

When the number of aggregates in a representative element is large enough, Eq. (7) can be approximately formulated in an integral form over diameter d by combining with Eq. (2):

$$K = \frac{E}{2L} \frac{\int_{d_{\rm m}}^{d_{\rm M}} df(d)\delta d}{\int_{d_{\rm m}}^{d_{\rm M}} d^{-1}f(d)\delta d}.$$
(8)

Therefore, the overall contact stiffness can be obtained by summing the contact stiffness of all the parallel particle columns, that is

$$K_{t} = mK = \frac{2ED^{2}}{L(1+e)} \frac{\langle d \rangle}{\langle d^{2} \rangle \langle d^{-1} \rangle},$$
(9)

where

(

$$d\rangle = \int_{d_{\rm m}}^{d_{\rm M}} df(d)\delta d,\tag{10}$$

$$d^{2}\rangle = \int_{d_{\rm m}}^{d_{\rm M}} d^{2}f(d)\delta d, \qquad (11)$$

Fig. 1. Correlations between C_g , C_u , and d_{50} (data sourced from Wichtmann & Triantafyllidis, 2009).

Please cite this article in press as: Sun, Y., et al. A grading parameter for evaluating the grading-dependence of the shear stiffness of granular aggregates. *Particuology* (2017), http://dx.doi.org/10.1016/j.partic.2017.05.006

Download English Version:

https://daneshyari.com/en/article/7061709

Download Persian Version:

https://daneshyari.com/article/7061709

Daneshyari.com