ARTICLE IN PRESS

Particuology xxx (2013) xxx-xxx

Contents lists available at ScienceDirect

Particuology

journal homepage: www.elsevier.com/locate/partic

Influence of disodium hydrogen phosphate dodecahydrate on hydrothermal formation of hemihydrate calcium sulfate whiskers

Qing Han^{a,b}, Kangbi Luo^{a,*}, Huping Li^a, Lan Xiang^b

^a College of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
^b Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 17 May 2013 Received in revised form 30 September 2013 Accepted 12 October 2013

Keywords: Calcium sulfate whiskers Morphology control Phosphorus Hydrothermal technology

ABSTRACT

The influence of Na₂HPO₄·12H₂O on the hydrothermal formation of hemihydrate calcium sulfate (CaSO₄·0.5H₂O) whiskers from dihydrate calcium sulfate (CaSO₄·2H₂O) at 135 °C was investigated. Experimental results indicate that the addition of phosphorus accelerates the hydrothermal conversion of CaSO₄·2H₂O to CaSO₄·0.5H₂O via the formation of Ca₃(PO₄)₂ and produces CaSO₄·0.5H₂O whiskers with thinner diameters and shorter lengths. Compared with the blank experiment without Na₂HPO₄·12H₂O, the existence of minor amounts (8.65 × 10⁻⁴-4.36 × 10⁻³ mol/L) of Na₂HPO₄·12H₂O led to a decrease in the diameter of CaSO₄·0.5H₂O whiskers from 1.0–10.0 to 0.5–2.0 µm and lengths from 70–300 to 50–200 µm.

© 2013 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

1. Introduction

Non-toxic, low cost, and environmentally friendly (Freyer & Voigt, 2003; Imahashi & Miyoshi, 1994; Xu, 2005) calcium sulfate whiskers are used widely as the filler or reinforcing material in plastics, rubber, paper-making, cement, and so on (Wang, Han, Yuan, & Qiao, 2005; Wang & Li, 2006; Zhu, Xu, Chen, & Li, 2010). Much research has reported on the hydrothermal formation of calcium sulfate whiskers over the last ten years. For example, using CaSO₄·2H₂O formed by co-precipitation from CaCl₂ and Na₂SO₄ solutions as the precursor, Luo, Li, Xiang, Li, and Ning (2010) studied the influence of temperature on the formation of CaSO₄·0.5H₂O whiskers and found that at 130-160°C, whiskers were produced via the dissolution-precipitation route. Yuan, Wang, Han, and Yin (2008) reported on the hydrothermal formation of CaSO₄·0.5H₂O whiskers with a diameter of 0.19–2.3 μ m and length of 70–100 μ m at 120–140 °C, using natural gypsum with high purity and fine particles (diameter smaller than 18 µm) as the raw material. However, the process is costly because a long grinding time is required for the gypsum ore. Xu, Li, Luo, and Xiang (2011) reported on the formation of CaSO₄.0.5H₂O whiskers from CaCO₃-bearing desulfurization gypsum via the acidification-hydrothermal route. They

found that acidification rather than sintering of the desulfurization gypsum favored the removal of $CaCO_3$ and the formation of active $CaSO_4 \cdot 0.5H_2O$, which promoted the subsequent hydrothermal formation of $CaSO_4 \cdot 0.5H_2O$ whiskers with high aspect ratio.

Some researchers studied the influence of organic surfactants amino trimethylene phosphonic acid (ATMP), cetyltrimethyl ammonium bromide (CTAB), 1,2-dihydroxybenzene 3,5-disulfonic acid (DHBDSA), a mixture of C_6-C_{22} sorbitan esters (CMR-100), citric acid (TCA), sodium dodecyl sulfate, cetyl pyridinium chloride (CPC) and so on or inorganic ions such as Al³⁺, Mg²⁺, and SO_4^{2-} on the formation of $CaSO_4 \cdot 2H_2O$ by mixing $Ca_{10}F_2(PO_4)_6$ and H₂SO₄ at 80 °C. The presence of CTAB, DHBDSA, CMR-100, CPC, Al³⁺, and SO₄²⁻ favored the formation of plate- or columnlike CaSO₄·2H₂O crystals with large size, while the addition of ATMP and TCA decreased the crystal size (Abdel-Aal, Rashad, & El-Shall, 2004; El-Shall, Abdel-Aal, & Moudgil, 2000; Mahmoud, Rashad, Ibrahim, & Abdel-Aal, 2004; Rashad, Baioumy, & Abdel-Aal, 2003; Rashad, Mahmoud, Ibrahim, & Abdel-Aal, 2004, 2005; Singh & Middendorf, 2007). Former studies reveal that the growth environment, structure and surface properties of the crystals varied with the addition of organic or inorganic additives, which led to a change in nucleation and growth speeds and produced crystals with different shapes.

This paper reports on an alternative way to produce $CaSO_4 \cdot 0.5H_2O$ whiskers with high aspect ratio by co-precipitation of $CaCl_2$ and Na_2SO_4 solutions at room temperature followed by hydrothermal treatment of the slurry in the presence of minor

Please cite this article in press as: Han, Q., et al. Influence of disodium hydrogen phosphate dodecahydrate on hydrothermal formation of hemihydrate calcium sulfate whiskers. *Particuology* (2013), http://dx.doi.org/10.1016/j.partic.2013.10.002

^{*} Corresponding author. E-mail addresses: luokangbi@126.com (K. Luo), xianglan@mail.tsinghua.edu.cn (L. Xiang).

^{1674-2001/\$ –} see front matter © 2013 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.partic.2013.10.002

ARTICLE IN PRESS

Q. Han et al. / Particuology xxx (2013) xxx-xxx

Fig. 1. Influence of Na₂HPO₄·12H₂O on XRD spectra of hydrothermal products. Na₂HPO₄·12H₂O(mol/L): a, b, c, and d denote 0, 8.65 × 10⁻⁴, 4.36 × 10⁻³, 8.72 × 10⁻³, respectively; time (h): 3.0; temperature (°C): 135; \blacksquare -Ca₃(PO₄)₂, \blacklozenge -CaSO₄·0.5H₂O.

amounts of Na₂HPO₄·12H₂O. The influence of Na₂HPO₄·12H₂O on the conversion of CaSO₄·2H₂O to CaSO₄·0.5H₂O was discussed and a possible mechanism proposed.

2. Experimental

2.1. Experimental procedure

Commercial analytical grade Na₂SO₄ and CaCl₂ reagents were provided by Beijing Chemical Reagent Factory (Beijing, China). In a typical experiment, 80 mL of 0.2–1.2 mol/L Na₂SO₄ was added (3.0–6.0 mL/min) to 160 mL of 0.2–1.2 mol/L CaCl₂ at room temperature, keeping the stirring speed at 200–350 min⁻¹. The slurry was stirred for 0.5 h and then the CaSO₄·2H₂O precipitate was filtered, washed and dried at 45 °C for 4.0 h.

The CaSO₄·2H₂O (Sinopharm Chemical Reagent Co., Ltd., with a purity more than 99.0%, Beijing, China) precipitate and Na₂HPO₄·12H₂O (Beijing chemical works, with a purity more than 99.0%, Beijing, China) were mixed with deionized water to form a slurry containing 3.0–10.0 wt% CaSO₄·2H₂O and 0–8.72 × 10⁻³ mol/L Na₂HPO₄·12H₂O. Then the slurry was transferred to an 80 cm³ Teflon-lined stainless steel autoclave and treated at 110–150 °C for 0–3.0 h. After hydrothermal treatment, the autoclave was cooled to room temperature naturally and the suspension was filtered. The solution was sampled for chemical analysis and the precipitate was washed and dried at 60 °C for 4.0 h.

2.2. Analysis

The sample morphology was examined with a field emission scanning electron microscope (FESEM, JSM-7401F, JEOL, Japan). The sample elements were measured with an energy dispersive spectrometer (EDS, GENESIS, EDAX, Utah, USA). The sample structure was determined using an X-ray powder diffractometer (XRD, D/max 2500, Rigaku, Japan) with Cu K α radiation (λ = 1.54178 Å). The concentrations of Ca²⁺, SO₄^{2–} and soluble P were analyzed by ethylene diamine tetraacetic acid titration, barium sulfate precipitation and the chinoline molybdic acid method, respectively.

3. Results and discussions

3.1. Influence of Na_2HPO_4 ·12 H_2O on hydrothermal formation of $CaSO_4$ ·0.5 H_2O whiskers

Figs. 1 and 2 show the influence of Na_2HPO_4 ·12H₂O on the XRD spectra and hydrothermal product morphology,

able 1	
--------	--

composition of	whiskers and	particles.

Element	Mass in whisker (%)		Mass in part	ticle (%)
	1	2	1	2
0	48.94	48.69	55.43	53.30
Ca	28.17	28.83	24.24	24.12
S	22.89	23.47	8.15	7.08
Р	-	-	12.17	15.50

respectively. The presence of Na₂HPO₄·12H₂O led to the formation of CaSO₄ \cdot 0.5H₂O with poor crystallinity and a Ca₃(PO₄)₂ impurity phase. In the absence of Na₂HPO₄·12H₂O (Fig. 2(a1)-(a3)), irregular CaSO₄·2H₂O plates were produced within 2.0h and $CaSO_4 \cdot 0.5H_2O$ whiskers with a length of 70–300 μ m, diameter of 1.0–10.0 µm and aspect ratio of 40–200 were produced at 3.0 h. In the presence of $8.65 \times 10^{-4} - 4.36 \times 10^{-3}$ mol/L Na₂HPO₄ 12H₂O, CaSO₄·0.5H₂O whiskers with lengths of 50-200 µm, diameters of 0.5-2.0 µm and aspect ratios of 50-200 were produced after 2.0 h of reaction (Fig. 2(b1)–(b3) and (c1)–(c3)). This indicates that the presence of Na₂HPO₄·12H₂O accelerated the hydrothermal conversion of CaSO₄·2H₂O to CaSO₄·0.5H₂O. The whisker length and diameter decreased with increase in Na2HPO4·12H2O concentration. The whiskers formed in the presence of $8.72\times 10^{-3}\,mol/L$ Na₂HPO₄·12H₂O were unstable and redissolved partially with increase in reaction time from 2.0 to 3.0 h, accompanied by a decrease in whisker length from 70–150 to $30-70\,\mu m$ (Fig. 2(d2)-(d3)).

The hydrothermal products formed in the presence of $Na_2HPO_4 \cdot 12H_2O$ were composed mainly of whiskers and a minor amount of irregular particles with typical morphology shown in Fig. 3. An energy spectrum analysis of the selected areas showed that no P was detected in the whiskers and the mass ratio of Ca:S:O was 0.97:1.00:4.22. Ca, S, O, and P were detected in the particles with a Ca:S:O:P mass ratio of 1.65:0.49:6.97:0.90 (Table 1). The occurrence of P in the particle is attributed mainly to the formation of Ca₃(PO₄)₂.

3.2. Influence of $Na_2HPO_4 \cdot 12H_2O$ on solution composition

Fig. 4 shows the variation of soluble P and the formation of $Ca_3(PO_4)_2$ with hydrothermal reaction time. The gradual decrease in concentration of soluble P with reaction time should be connected with the formation of $Ca_3(PO_4)_2$. The increase in initial Na_2HPO_4 ·12H₂O concentration favored the formation of $Ca_3(PO_4)_2$.

Fig. 5 shows the variation of soluble Ca^{2+} ($[Ca^{2+}]$) and SO_4^{2-} ($[SO_4^{2-}]$) with hydrothermal reaction time. In the blank experiment without Na₂HPO₄·12H₂O, $[Ca^{2+}]$ (0.016–0.017 mol/L) and $[SO_4^{2-}]$ (0.013–0.015 mol/L) were quite similar and stable and their low concentration is attributed to the low solubility of CaSO₄·2H₂O under the experimental conditions (Luo et al., 2010).

In the presence of Na₂HPO₄·12H₂O, $[Ca^{2+}]$ and $[SO_4^{2-}]$ increased gradually with increase in reaction time, indicating a faster dissolution of CaSO₄·2H₂O than precipitation of CaSO₄·0.5H₂O. Moreover, $[SO_4^{2-}]$ was higher than $[Ca^{2+}]$ and the difference between the $[SO_4^{2-}]$ and $[Ca^{2+}]$ became more obvious at higher initial Na₂HPO₄·12H₂O concentration. This should be linked to the formation of Ca₃(PO₄)₂ precipitate. Compared with CaSO₄·2H₂O and CaSO₄·0.5H₂O, Ca₃(PO₄)₂ was more stable under the experimental conditions owing to the different K_{sp} at 135 °C (5.16 × 10⁻⁶ for CaSO₄·2H₂O, 4.53 × 10⁻⁶ for CaSO₄·0.5H₂O, and 9.41 × 10⁻⁴⁰ for Ca₃(PO₄)₂). As shown in Eqs. (1)–(4), Ca²⁺ and SO₄²⁻ were produced mainly by the dissolution of CaSO₄·2H₂O

Please cite this article in press as: Han, Q., et al. Influence of disodium hydrogen phosphate dodecahydrate on hydrothermal formation of hemihydrate calcium sulfate whiskers. *Particuology* (2013), http://dx.doi.org/10.1016/j.partic.2013.10.002

Download English Version:

https://daneshyari.com/en/article/7061781

Download Persian Version:

https://daneshyari.com/article/7061781

Daneshyari.com