Accepted Manuscript

Title: Cooling curve thermal analysis and microstructure characterization of Mg-5Zn-1Y-xCa (0-1 wt%) alloys

Authors: Saeedeh Naghdali, Hassan Jafari, Mehdi Malekan

PII:	S0040-6031(18)30535-5
DOI:	https://doi.org/10.1016/j.tca.2018.07.011
Reference:	TCA 78044
To appear in:	Thermochimica Acta
Received date:	24-1-2018
Revised date:	12-7-2018
Accepted date:	16-7-2018

Please cite this article as: Naghdali S, Jafari H, Malekan M, Cooling curve thermal analysis and microstructure characterization of Mg-5Zn-1Y-xCa (0-1 wt%) alloys, *Thermochimica Acta* (2018), https://doi.org/10.1016/j.tca.2018.07.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Cooling curve thermal analysis and microstructure characterization of

Mg-5Zn-1Y-xCa (0-1 wt%) alloys

Saeedeh Naghdali¹, Hassan Jafari¹, Mehdi Malekan²

¹Materials Engineering Department, Faculty of Materials Engineering and Modern

Technologies, Shahid Rajaee Teacher Training University (SRTTU), P.O Box 16785-136

Tehran, Iran

²School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 14395-515 Tehran, Iran

Corresponding Author:

Full Name:	Hassan Jafari
	Associate Professor
Contact Address:	Materials Engineering Department, Faculty of Materials Engineering
	and Modern Technologies, Shahid Rajaee Teacher Training University
	(SRTTU), 16785-136 Tehran, Iran.
Tel.:	0098-09120927517
Fax:	0098-21-22970022
E-mail:	jafari_h@yahoo.com

Highlights

- Mg-5Zn-1Y-xCa (x= 0.0, 0.1, 0.3, 0.5, and 1.0 wt %) alloys were investigated.
- Microstructure and solidification pathway of Mg-5Zn-1Y-xCa alloys were studied.
- Ca refined the grains and developed Ca₂Mg₆Zn₃ intermettalic in the microstructure.
- Liquidus and nucleation undercooling temperatures were decreased by Ca addition.
- Ca addition increased solidification range and solidus temperature.

hjafari@sru<u>.ac.ir</u>

Abstract

The effect of 0-1wt% Ca addition on solidification pathway of Mg-5Zn-1Y alloy and its solidification characteristics such as nucleation transformation and intermetallics formation temperatures was investigated via plotting cooling and the corresponding first derivative curves. The results revealed the presence of three peaks in the first derivative curve of the ternary Mg-5Zn-1Y alloy, referring to the formation of α-Mg primary phase and intermetallics Mg₃Zn₃Y₂ (W-phase) and Mg₃YZn₆ (I-phase). One more peak, corresponding to the formation of intermetallic Ca₂Mg₆Zn₃ phase, appeared in that of the quaternary Mg-5Zn-1Y-xCa alloy when Ca content exceeds 0.1 wt%. The cooling curves showed that increasing Ca content from 0 to 1wt% results in reducing the liquidus temperature from 659°C to 636°C and the average

Download English Version:

https://daneshyari.com/en/article/7061851

Download Persian Version:

https://daneshyari.com/article/7061851

Daneshyari.com