Accepted Manuscript

Title: Toward an Inherently Safer Alternative for Operating *N*-oxidation of Alkylpyridines: Effect of *N*-oxide on Lutidine – Water Phase Separation

Authors: Sunder Janardanan, Maria I. Papadaki, Simon P. Waldram, M.Sam Mannan

PII: \$0040-6031(17)30204-6

DOI: http://dx.doi.org/10.1016/j.tca.2017.08.007

Reference: TCA 77808

To appear in: Thermochimica Acta

Received date: 8-2-2017 Revised date: 2-8-2017 Accepted date: 14-8-2017

Please cite this article as: Sunder Janardanan, Maria I.Papadaki, Simon P.Waldram, M.Sam Mannan, Toward an Inherently Safer Alternative for Operating N-oxidation of Alkylpyridines: Effect of N-oxide on Lutidine – Water Phase Separation, Thermochimica Actahttp://dx.doi.org/10.1016/j.tca.2017.08.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Toward an Inherently Safer Alternative for Operating *N*-oxidation of Alkylpyridines: Effect of *N*-oxide on Lutidine – Water Phase Separation

Sunder Janardanan¹, Maria I. Papadaki^{1,2}, Simon P. Waldram¹ and M. Sam Mannan^{1,*}

¹Mary Kay O'Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A&M University System, College Station, Texas 77843-3122, USA

²Professor of Environmental Chemistry & Processes, Department of Environmental & Natural Resources Management, School of Engineering, University of Patras, SEFERI 2, AGRINIO, GREECE

*Corresponding author: M. Sam Mannan, +1 (979) 862-3985, mannan@tamu.edu

HIGHLIGHTS

- Effect of 2,6-lutidine *N*-oxide on 2,6-lutidine/water phase separation is studied
- 2,6-lutidine *N*-oxide has a positive influence on the mixing of the system
- Homogeneous mixtures result if N-oxide above 20% (w/w) in ternary system at 110°C
- Inherent safety concept "hybridization" to N-oxidation reactions identified

ABSTRACT

The *N*-oxidation of alkylpyridines is an industrially important reaction since it produces alkylpyridine *N*-oxides that are pharmaceutical intermediates. The aqueous hydrogen peroxide used to oxidize the alkylpyridine has a tendency to decompose during the reaction thereby introducing serious hazards for the process. The decomposition is accelerated during the *N*-oxidation of higher order alkylpyridines (lutidines, collidines) due to mass transfer limitations caused by the separation of the liquid into organic and aqueous phase. Also, the presence of phosphotungstic acid (catalyst) in the aqueous phase further intensifies the peroxide decomposition reducing the safety and efficiency of the process. The current work investigates the influence of the product *N*-oxide on the mixing between alkylpyridine and water, which is primarily responsible for the liquid phase heterogeneity during the *N*-oxidation. Ternary mixtures of 2,6-lutidine, 2,6-

Download English Version:

https://daneshyari.com/en/article/7062141

Download Persian Version:

https://daneshyari.com/article/7062141

<u>Daneshyari.com</u>