Accepted Manuscript

Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies

Xin Zhang, Weijing Fu, Yuanxue Yin, Zhihua Chen, Rongliang Qiu, Marie-Odile Simonnot, Xuefeng Wang

PII: S0960-8524(18)31057-5

DOI: https://doi.org/10.1016/j.biortech.2018.07.125

Reference: BITE 20255

To appear in: Bioresource Technology

Received Date: 19 June 2018 Revised Date: 24 July 2018 Accepted Date: 25 July 2018

Please cite this article as: Zhang, X., Fu, W., Yin, Y., Chen, Z., Qiu, R., Simonnot, M-O., Wang, X., Adsorption-reduction removal of Cr(VI) by tobacco petiole pyrolytic biochar: batch experiment, kinetic and mechanism studies, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.07.125

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Ausorption-reduction removal of Cr(v1) by tobacco penole pyrolytic blochar:
2	batch experiment, kinetic and mechanism studies
3	Xin Zhang ^{a,b} , Weijing Fu ^a , Yuanxue Yin ^a , Zhihua Chen ^a , Rongliang Qiu ^b ,
4	Marie-Odile Simonnot ^c , Xuefeng Wang ^{a,}
5	^a School of Environment, Henan Normal University; Key Laboratory for Yellow River
6	and Huai River Water Environment and Pollution Control. Xinxiang 453007, China.
7	^b Guangdong Provincial Key Laboratory of Environmental Pollution Control and
8	Remediation Technology, China.
9	^c Université de Lorraine, CNRS, LRGP, F-54000, Nancy, France.
10 11 12	Corresponding author. E-mail address: wxf1201@hotmail.com; Tel./Fax: +86 373 3325971.
13	
14	
15	Abstract
16	Tobacco petiole biochar (TPBC) was prepared via pyrolysis and used for Cr(VI)
17	removal. Cr(VI) removal efficiency was reduced by pyrolytic temperature (PyT)
18	increase which mainly affected by functional groups rather than specific surface area.
19	According to the optimal pseudo second-order kinetic, the initial adsorption rate was
20	decreased with PyT increase from 355.91 mg·g ⁻¹ ·min ⁻¹ (PyT=300°C) to 3.44
21	mg·g-¹·min⁻¹ (PyT=700°C). The isotherm was optimally explained by <i>Temkin</i> model
22	involved physical absorption with heat of 28.73 J/mol. Simulation result of
23	adsorption-reduction-adsorption process showed the Cr(VI) removal was kinetic
24	controlled by Cr(VI) and Cr(III) adsorptions. TPBC300 was the optimal TPBC for
25	chromium removal from electroplating wastewater with efficiencies of: 66.7%(Cr(VI))
	<u></u>

Corresponding author. *E-mail* address: wxf1201@hotmail.com; *Tel./Fax*: +86 373 3325971.

Download English Version:

https://daneshyari.com/en/article/7065669

Download Persian Version:

https://daneshyari.com/article/7065669

Daneshyari.com