Accepted Manuscript

Effects of CO on Hydrogenotrophic Methanogenesis under Thermophilic and Extreme-thermophilic Conditions: Microbial Community and Biomethanation Pathways

Fan Bu, Nanshi Dong, Samir Kumar Khanal, Li Xie, Qi Zhou

PII: S0960-8524(18)30454-1

DOI: https://doi.org/10.1016/j.biortech.2018.03.092

Reference: BITE 19731

To appear in: Bioresource Technology

Received Date: 30 January 2018 Revised Date: 16 March 2018 Accepted Date: 18 March 2018

Please cite this article as: Bu, F., Dong, N., Kumar Khanal, S., Xie, L., Zhou, Q., Effects of CO on Hydrogenotrophic Methanogenesis under Thermophilic and Extreme-thermophilic Conditions: Microbial Community and Biomethanation Pathways, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.03.092

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effects of CO on Hydrogenotrophic Methanogenesis under Thermophilic and Extreme-thermophilic Conditions: Microbial Community and Biomethanation Pathways

Fan Bu*, Nanshi Dong*, Samir Kumar Khanal**, Li Xie*, Qi Zhou*

- *, State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
- **, Department of Molecular Biosciences and Bioengineering (MBBE), University of Hawai'i at Mānoa, 1955 East-West Road, Agricultural Science Building 218, Honolulu, HI 96822, USA

Abstract

Coke oven gas is considered as a potential hydrogen source for biogas bio-upgrading. However, the contained CO may impose toxicity to methanogens. In this study, the effects of CO on biomethanation performance and microbial community structure of hydrogenotrophic mixed cultures were investigated under thermophilic (55°C) and extreme-thermophilic (70°C) conditions. 5% (v/v) CO did not inhibit hydrogenotrophic methanogenesis during semi-continuous operation, and 83-97% CO conversion to CH₄ was achieved. *Methanothermobacter thermoautotrophicus* was the dominant methanogen at both temperatures and was the main functional archaea associated with CO biomethanation. Specific methanogenic activity test results showed that long-term 5% CO acclimation shortened the lag phase from 5 hrs to 1 hr at 55°C and 15 hrs to 3 hrs at 70°C. CO₂ was the preferred carbon source over CO for hydrogenotrophic methanogens and CO consumption only started when CO₂ was completely depleted. *M. thermoautotrophicus* dominated mixed cultures showed a great potential in simultaneous hydrogenotrophic methanogenesis and CO biomethanation.

Keywords

Biogas upgrading; hydrogenotrophic methanogenesis; carbon monoxide; extreme-thermophilic, microbial community

1. Introduction

Biogas produced via anaerobic digestion (AD) consists of (% by volume) 50-75% CH₄ and 25-40% CO₂, and can be used mainly for on-site heat and power generation (Li

Download English Version:

https://daneshyari.com/en/article/7065909

Download Persian Version:

https://daneshyari.com/article/7065909

Daneshyari.com