Accepted Manuscript

Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by isolated *Bacillus* sp. M_4 and proteomic study

M.K. Kureel, S.R. Geed, B.N. Rai, R.S. Singh

PII: S0960-8524(18)30843-5

DOI: https://doi.org/10.1016/j.biortech.2018.06.064

Reference: BITE 20081

To appear in: Bioresource Technology

Received Date: 4 May 2018 Revised Date: 16 June 2018 Accepted Date: 20 June 2018

Please cite this article as: Kureel, M.K., Geed, S.R., Rai, B.N., Singh, R.S., Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by isolated *Bacillus* sp. M₄ and proteomic study, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.06.064

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Novel investigation of the performance of continuous packed bed bioreactor (CPBBR) by

isolated *Bacillus* sp. M₄ and proteomic study

M. K. Kureel¹; S. R. Geed²; B. N. Rai³; R. S. Singh⁴*

Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, UP – 221005,

India,

Abstract:

The present study reveals the benzene degrading potential of bacterial species isolated from

petroleum contaminated soil. Genomic analysis suggests that *Bacillus* sp. M4 was found to be

dominating species. The process parameters were optimized and found to be pH 7.0±0.2,

temperature 32±5°C, immobilization time (20 days) and benzene concentration 400 mg/L. The

maximum removal efficiency of benzene was calculated and found to be 93.13% at elimination

capacity156 (mg/L/day) and inlet loading rate 192 (mg/L/day) achieved in 54th days of operation.

In the study, the residual metabolites were analyzed by GC/MS analysis and identified as

benzene-1,2-diol. In order to identify the responsible protein involved in the process of benzene

biodegradation, The proteomic study was performed and proteins were identified by MALDI-

TOF analysis. The molecular docking was confirmed by the benzene biodegradation.

Keyword: Benzene, MALDI- TOF MS/MS, Proteomics, FT-IR, CPBBR, Docking

Corresponding author: Mob: +91 9450119379

Email: rssingh.che@itbhu.ac.in

1

Download English Version:

https://daneshyari.com/en/article/7066069

Download Persian Version:

https://daneshyari.com/article/7066069

<u>Daneshyari.com</u>