Accepted Manuscript

Biosynthesis of pyruvic acid from glycerol-containing substrates and its regulation in the yeast *Yarrowia lipolytica*

Svetlana V. Kamzolova, Igor G. Morgunov

PII: S0960-8524(18)30850-2

DOI: https://doi.org/10.1016/j.biortech.2018.06.071

Reference: BITE 20088

To appear in: Bioresource Technology

Received Date: 24 April 2018 Revised Date: 19 June 2018 Accepted Date: 20 June 2018

Please cite this article as: Kamzolova, S.V., Morgunov, I.G., Biosynthesis of pyruvic acid from glycerol-containing substrates and its regulation in the yeast *Yarrowia lipolytica*, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.06.071

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Biosynthesis of pyruvic acid from glycerol-containing substrates and its regulation in the yeast *Yarrowia lipolytica*

Svetlana V. Kamzolova and Igor G. Morgunov*

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, 142290 Russia

Abstract

The ability of different yeasts to synthesize pyruvic acid (PA) from glycerol-containing substrates has been studied. The selected strain *Yarrowia lipolytica* VKM Y-2378 synthesized PA with α-ketoglutaric acid (KGA) as a byproduct. The content of KGA greatly depended on cultivation conditions. The minimal formation of the byproduct was provided by the limitation of yeast growth by thiamine (0.6 μg/g biomass); the use of ammonium sulfate (0.6%) as a nitrogen source; addition of glycerol to cultivation medium in 20 g/L portions; maintaining the cultivation temperature at 28°C, pH of the cultivation medium at 4.5, and medium aeration between 55 and 60% of saturation; the optimal cultivation time was 48 h. The selected strain cultivated under such conditions in a fermenter with a waste glycerol from biodiesel production process synthesized 41 g/L PA with a yield of 0.82 g/g. The mechanism of PA production from glycerol-containing substrates in *Y. lipolytica* is discussed.

Keywords:

pyruvic acid (PA) production; *Yarrowia lipolytica*; waste glycerol from biodiesel production process; optimization

*Corresponding author at: G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region 142290, Russia. Tel.: +007 9165251329.

E-mail address: morgunovs@rambler.ru (I.G. Morgunov).

Download English Version:

https://daneshyari.com/en/article/7066089

Download Persian Version:

https://daneshyari.com/article/7066089

<u>Daneshyari.com</u>