Accepted Manuscript

Innovative polyhydroxybutyrate production by *Chlorella fusca* grown with pentoses

A.P.A. Cassuriaga, B.C.B. Freitas, M.G. Morais, J.A.V. Costa

PII:	S0960-8524(18)30805-8
DOI:	https://doi.org/10.1016/j.biortech.2018.06.026
Reference:	BITE 20043
To appear in:	Bioresource Technology
Received Date:	15 May 2018
Revised Date:	8 June 2018
Accepted Date:	10 June 2018

Please cite this article as: Cassuriaga, A.P.A., Freitas, B.C.B., Morais, M.G., Costa, J.A.V., Innovative polyhydroxybutyrate production by *Chlorella fusca* grown with pentoses, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.06.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Innovative polyhydroxybutyrate production by Chlorella fusca grown with
2	pentoses
3 4 5	¹ Cassuriaga, A. P. A; ¹ Freitas, B. C. B.; ² Morais, M. G; ¹ Costa, J. A. V.
6	¹ College of Chemistry and Food Engineering, Federal University of Rio Grande,
7	Laboratory of Biochemical Engineering, Rio Grande, RS, Brazil
8	² College of Chemistry and Food Engineering, Federal University of Rio Grande,
9	Laboratory of Microbiology and Biochemistry, Rio Grande, RS, Brazil
10	*Corresponding Author: Prof. Dr. Jorge Alberto Vieira Costa - Laboratory of
11	Biochemical Engineering - College of Chemistry and Food Engineering - Federal
12	University of Rio Grande - P.O. Box 474, 96203-900 - Av. Itália, km 8 - Rio Grande,
13	RS, Brazil. Phone: +55 53 32336908. Fax: +55 53 32336968.
14	E-mail: jorgealbertovc@gmail.com
15	
16	Abstract
17	The current study aimed to evaluate if the addition of pentoses along with variations in
18	light intensity and photoperiod can stimulate the production of polyhydroxybutyrate
19	(PHB) and other biomolecules by Chlorella fusca LEB 111. The variables evaluated
20	were the addition of xylose and arabinose as sources of organic carbon, different
21	photoperiods (18 h, 12 h and 6 h light) and variations in light intensities (58, 28 and 9
22	μ mol _{photons} m ⁻² s ⁻¹). The highest PHB accumulation (17.4% w w ⁻¹) and protein
23	production (53.2% w w^{-1}) were observed in assays with xylose addition and a
24	photoperiod of 6 h of light provided at 28 and 58 μ mol _{photons} m ⁻² s ⁻¹ , respectively. The

Download English Version:

https://daneshyari.com/en/article/7066336

Download Persian Version:

https://daneshyari.com/article/7066336

Daneshyari.com