Accepted Manuscript

Divergent assemblage patterns of abundant and rare microbial sub-communities in response to inorganic carbon stresses in a simultaneous anammox and denitrification (SAD) system

Duntao Shu, Hong Yue, Yanling He, Gehong Wei

PII: S0960-8524(18)30308-0

DOI: https://doi.org/10.1016/j.biortech.2018.02.111

Reference: BITE 19621

To appear in: Bioresource Technology

Received Date: 17 January 2018 Revised Date: 20 February 2018 Accepted Date: 22 February 2018

Please cite this article as: Shu, D., Yue, H., He, Y., Wei, G., Divergent assemblage patterns of abundant and rare microbial sub-communities in response to inorganic carbon stresses in a simultaneous anammox and denitrification (SAD) system, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.02.111

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Divergent assemblage patterns of abundant and rare microbial sub-communities in response to inorganic carbon stresses in a simultaneous anammox and denitrification (SAD) system

Duntao Shu^a, Hong Yue^b, Yanling He^c, Gehong Wei^a*

^a State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China

^b State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China

^c School of Human Settlements & Civil Engineering, Xi'an Jiaotong University, Shaanxi 710049, China

Abstract

Inorganic carbon has profound influence on anammox system and distinct microbial communities play pivotal roles in nitrogen removal, yet little is known about the ecological patterns of abundant and rare sub-communities in response to inorganic carbon stresses in simultaneous anammox and denitrification systems. Here the aspects of community ecology of abundant and rare taxa under abiotic constraints were explored. Results showed that different IC/NH₄⁺-N ratios have significant influences on NH₄⁺-N and TN removal. Co-occurrence networks revealed that abundant and rare taxa present contrasting assemblage patterns and ecological strategies. Spearman's

^{*} Corresponding author. Email: weigehong@nwsuaf.edu.cn.

Download English Version:

https://daneshyari.com/en/article/7067694

Download Persian Version:

https://daneshyari.com/article/7067694

<u>Daneshyari.com</u>