Accepted Manuscript

An Improved Predictive Model to Determine the Thermal Degradation of Lignocellulosic Materials at Low Temperature (Torrefaction) Ranges

M. Grigiante, M. Brighenti

PII: S0960-8524(18)30079-8

DOI: https://doi.org/10.1016/j.biortech.2018.01.065

Reference: BITE 19422

To appear in: Bioresource Technology

Received Date: 7 November 2017 Revised Date: 14 January 2018 Accepted Date: 15 January 2018

Please cite this article as: Grigiante, M., Brighenti, M., An Improved Predictive Model to Determine the Thermal Degradation of Lignocellulosic Materials at Low Temperature (Torrefaction) Ranges, *Bioresource Technology* (2018), doi: https://doi.org/10.1016/j.biortech.2018.01.065

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

An Improved Predictive Model to Determine the Thermal Degradation of Lignocellulosic Materials at Low Temperature (Torrefaction) Ranges

M. GRIGIANTE*, M. BRIGHENTI

University of Trento, Department of Civil, Environmental and Mechanical Engineering, Via Mesiano 77, 38123, Trento, Italy.

Abstract

This study introduces an improved computational procedure to determine the thermal degradation of biomasses when submitted to a torrefaction process. The novelty consists in integrating a *summative* kinetic model approach with an enhanced *finite difference* scheme. This is achieved by defining timing updated parameters to account for both the extent of conversion and the evolution of the fibers composition. As main result, the proposed method enhances the exploitation of the *summative* assumption considering that the predictive accuracy of the model sets within 5% as maximum error. Furthermore, the adopted discrete approach contributes to generalize the TGA set up going beyond the conventional heating programs usually limited to isothermal and constant heating rate constrains. Due to these constitutive improvements, the proposed computational approach looks promising for investigations involving both kinetic analysis and thermal processes design including torrefaction.

Keywords: Biomass, Kinetic, Model, Torrefaction

*Corresponding author. Tel.: +39 0461 282653; fax: +39 0461 282670.

E-mail address: maurizio.grigiante@unitn.it

Download English Version:

https://daneshyari.com/en/article/7067950

Download Persian Version:

https://daneshyari.com/article/7067950

<u>Daneshyari.com</u>