Accepted Manuscript

Simultaneous efficient removal of oxyfluorfen with electricity generation in a microbial fuel cell and its microbial community analysis

Qinghua Zhang, Lei Zhang, Han Wang, Qinrui Jiang, Xiaoyu Zhu

PII:	S0960-8524(17)32095-3
DOI:	https://doi.org/10.1016/j.biortech.2017.11.091
Reference:	BITE 19241
To appear in:	Bioresource Technology
Received Date:	9 October 2017
Revised Date:	23 November 2017
Accepted Date:	27 November 2017

Please cite this article as: Zhang, Q., Zhang, L., Wang, H., Jiang, Q., Zhu, X., Simultaneous efficient removal of oxyfluorfen with electricity generation in a microbial fuel cell and its microbial community analysis, *Bioresource Technology* (2017), doi: https://doi.org/10.1016/j.biortech.2017.11.091

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Simultaneous efficient removal of oxyfluorfen with electricity generation in a
2	microbial fuel cell and its microbial community analysis
3	Qinghua Zhang ^{a,c} , Lei Zhang ^{a,b} , Han Wang ^{a,c} , Qinrui Jiang, ^{a,c} , Xiaoyu Zhu ^{a,c,*}
4	^a Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key
5	Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu
6	610041, China
7	^b Shenyang Academy of Environmental Science, Shenyang, 110167, China
8	^c University of Chinese Academy of Sciences, Beijing, 100049, China
9	* Corresponding author. E-mail address: <u>zhuxy@cib.ac.cn</u> (X Y. Zhu)
10	Abstract: The performance of a microbial fuel cell (MFC) to degrade oxyfluorfen
11	was investigated. Approximately 77% of 50 mg/L oxyfluorfen was degraded within
12	24 h by anodic biofilm. The temperature, pH, and initial oxyfluorfen concentration
13	had a significant effect on oxyfluorfen degrading, and a maximum degradation rate of
14	94.95% could theoretically be achieved at 31.96 °C, a pH of 7.65, and an initial
15	oxyfluorfen concentration of 120.05 mg/L. Oxyfluorfen was further catabolized
16	through various microbial metabolism pathways. Moreover, the anodic biofilm
17	exhibited multiple catabolic capacities to 4-nitrophenol, chloramphenicol,
18	pyraclostrobin, and sulfamethoxazole. Microbial community analysis indicated that
19	functional bacteria Arcobacter, Acinetobacter, Azospirillum, Azonexus, and
20	Comamonas were the predominant genera in the anodic biofilm. In terms of the
21	efficient removal of various organic compounds and energy recovery, the MFC
22	seemed to be a promising approach for the treatment of environmental contaminants.

Download English Version:

https://daneshyari.com/en/article/7068981

Download Persian Version:

https://daneshyari.com/article/7068981

Daneshyari.com